勾股定理拓展练习含解析.docx
《勾股定理拓展练习含解析.docx》由会员分享,可在线阅读,更多相关《勾股定理拓展练习含解析.docx(8页珍藏版)》请在课桌文档上搜索。
1、16勾股定理拓展练习(含解析)一、选择题(共3小题,每小题4分,满分12分)1(4分)(1999*)如图,在四边形ABCD中,A=60,B=D=90,BC=2,CD=3,则AB=()A4B5C2D2(4分)若三角形中的一条边是另一条边的2倍,且有一个角为30,则这个三角形是()A直角三角形B锐角三角形C钝角三角形D以上都不对3(4分)如图,过ABC的顶点A的直线DEBC,ABC、ACB的平分线分别交DE于E、D两点,若AB=6,AC=8,则DE=()A10B14C16D24二、填空题(共7小题,每小题5分,满分35分)4(5分)如图,P为ABC边BC上的一点,且PC=2PB,已知ABC=45,
2、APC=60,则ACB的度数是_5(5分)(1997)如图,在四边形ABCD中,AB:BC:CD:DA=2:2:3:1,且ABC=90,则DAB的度数是_6(5分)如图,四边形ABCD中,AB=6cm,BC=8cm,CD=24cm,DA=26cm,且ABC=90,则四边形ABCD的面积是_cm27(5分)如图,P是长方形ABCD内一点,已知PA=3,PB=4,PC=5,则PD2等于_8(5分)如图,长方形纸片ABCD中,AB=3cm,BC=4cm,现将A、C重合,使纸片折叠压平,设折痕为EF,则SAEF=_cm29(5分)如图,已知A=B,AA1,BB1,PP1均垂直于A1B1,AA1=17,
3、PP1=16,BB1=20,A1B1=12,则AP+PB=_10(5分)如图,一个直角三角形的三边长均为正整数,已知它的一条直角边的长恰是3,则另一条直角边的长是_三、解答题(共4小题,满分53分)11(12分)如图,在ABC中,BAC=90,AB=AC,D是BC上的点求证:BD2+CD2=2AD212(13分)如图:在ABC中,AB=BC=AC,AE=CD,AD与BE相交于点P,BQAD于Q求证:ADCBEA;BP=2PQ13(14分)如图,在等腰直角ABC的斜边上取异于B,C的两点E,F,使EAF=45,求证:以EF,BE,CF为边的三角形是直角三角形14(14分)如图,在RtABC中,A
4、=90,D为斜边BC中点,DEDF,求证:EF2=BE2+CF2第1章勾股定理2010年拓展练习参考答案与试题解析一、选择题(共3小题,每小题4分,满分12分)1(4分)(1999*)如图,在四边形ABCD中,A=60,B=D=90,BC=2,CD=3,则AB=()A4B5C2D考点:解直角三角形专题:计算题;压轴题分析:分析题意构造一个直角三角形,然后利用勾股定理解答即可解答:解:如图,延长AD,BC交于点E,则E=30在CED中,CE=2CD=6(30锐角所对直角边等于斜边一半),BE=BC+CE=8,在AEB中,AE=2AB(30锐角所对直角边等于斜边一半)AB2+BE2=AE2,即AB
5、2+64=(2AB)2,3AB2=64,解得:AB=故选D点评:本题通过作辅助线,构造直角三角形,利用解直角三角形的知识进行计算2(4分)若三角形中的一条边是另一条边的2倍,且有一个角为30,则这个三角形是()A直角三角形B锐角三角形C钝角三角形D以上都不对考点:三角形分析:如图,分AB是30角所对的边AC的2倍和AB是30角相邻的边AC的2倍两种情况求解解答:解:如图:(1)当AB是30角所对的边AC的2倍时,ABC是直角三角形;(2)当AB是30角相邻的边AC的2倍时,ABC是钝角三角形所以三角形的形状不能确定故选D点评:解答本题关键在于已知30的角与边的关系不明确,需要讨论求解,所以三角
6、形的形状不能确定3(4分)如图,过ABC的顶点A的直线DEBC,ABC、ACB的平分线分别交DE于E、D两点,若AB=6,AC=8,则DE=()A10B14C16D24考点:勾股定理;平行四边形的性质分析:BE为ABC的角平分线,EBC=ABE,CD为ACB的角平分线,则ACD=DCB,因为BCDE,根据平行线的性质,内错角相等,可得出AD=AC,AB=AE,所以DE=AD+AE=AB+AC,从而可求出DE的长度解答:解:由分析得:EBC=ABE,ACD=DCB;根据平行线的性质得:DCB=CDE,EBC=BED;所以ADC=ACD,ABE=AEB,则AD=AC,AB=AE;所以DE=AD+A
7、E=AB+AC=6+8=14;故选B点评:本题考点:平行四边形的性质两直线平行,则内错角相等然后根据角度相等可得出ADC和ABE为等腰三角形所以DE的长度等于AB和AC的和二、填空题(共7小题,每小题5分,满分35分)4(5分)如图,P为ABC边BC上的一点,且PC=2PB,已知ABC=45,APC=60,则ACB的度数是75考点:三角形内角和定理;三角形的外角性质;等腰三角形的判定与性质;勾股定理专题:计算题分析:根据三角形内角和定理求出DCP=30,求证PB=PD;再根据三角形外角性质求证BD=AD,再利用BPD是等腰三角形,然后可得AD=DC,ACD=45从而求出ACB的度数解答:解:过
8、C作AP的垂线CD,垂足为点D连接BD;PCD中,APC=60,DCP=30,PC=2PD,PC=2PB,BP=PD,BPD是等腰三角形,BDP=DBP=30,ABP=45,ABD=15,BAP=APCABC=6045=15,ABD=BAD=15,BD=AD,DBP=4515=30,DCP=30,BD=DC,BDC是等腰三角形,BD=AD,AD=DC,CDA=90,ACD=45,ACB=DCP+ACD=75,故答案为:75点评:此题主要考查学生三角形内角和定理,等腰三角形的判定与性质,三角形外角的性质,勾股定理等知识点,综合性较强,有一定的拔高难度,属于难题5(5分)(1997)如图,在四边形
9、ABCD中,AB:BC:CD:DA=2:2:3:1,且ABC=90,则DAB的度数是135考点:勾股定理的逆定理分析:由已知可得AB=BC,从而可求得BAC的度数,再根据已知可求得AC:CD:DA=2:3:1,从而发现其符合勾股定理的逆定理,即可得到ADC=90,从而不难求得DAB的度数解答:解:AB:BC:CD:DA=2:2:3:1,且ABC=90,AB=BC,BAC=ACB=45,AB:BC:AC=2:2:2=1:1:,AC:CD:DA=2:3:1,AC2+AD2=CD2DAC=90,DAB=45+90=135点评:此题主要考查学生对勾股定理的逆定理的理解及运用能力6(5分)如图,四边形A
10、BCD中,AB=6cm,BC=8cm,CD=24cm,DA=26cm,且ABC=90,则四边形ABCD的面积是144cm2考点:勾股定理的逆定理;勾股定理分析:连接AC,根据勾股定理可求得AC的长,再根据勾股定理的逆定理得,ADC也是直角三角形,分别求得两个三角形的面积即可得到四边形ABCD的面积解答:解:连接ACAB=6cm,BC=8cm,ABC=90AC=10cmCD=24cm,DA=26cmAC2+CD2=AD2ACD=90SABC=68=24cm2SACD=1024=120cm2四边形ABCD的面积=24+120=144cm2点评:此题主要考查学生对勾股定理逆定理及三角形面积的理解及运
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 拓展 练习 解析

链接地址:https://www.desk33.com/p-19980.html