第5章获取材料II.ppt
《第5章获取材料II.ppt》由会员分享,可在线阅读,更多相关《第5章获取材料II.ppt(42页珍藏版)》请在课桌文档上搜索。
1、第五章信息获取材料,信息功能材料,5.4 元素半导体光电材料,理想的晶体在绝对零度时存在一个空的导带,由一个禁带把导带与填满的价带隔开,随着温度上升,由于热激发而产生 n-p 对,引起导电势,这种性质叫做本征半导电性,电子和空穴具有相同的浓度:,一、Si 和 Ge 的结构特征和电学性质,1.本征性质,典型的禁带宽度:Si 1.12 eV Ge 0.665 eV四方面的特点:,理想的晶体是不存在的,由于实际半导体中化学杂质和结构缺陷或多或少为存在,影响平衡时电子和空穴的相对浓度。但是:施主和受主相等浓度导致类似本征材料的状况。杂质能级如果靠近相应能带边缘,则为浅位杂质,反之为深位杂质。前者是II
2、I族和V族的全部元素,后者有过渡金属等。,2.非本征性质,热振动、杂质和结构缺陷是晶体周期的不完整性的三个方面。缺陷的重要性主要在于它们对迁移率、复合和俘获现象的影响,主要有点缺陷、线缺陷和面缺陷。点缺陷是集中在晶体中单点的结构缺陷,包括空位和填隙等;线缺陷是沿着一条件集中的不完整性,也叫做位错,如:应力作用下产生的某些平面滑移等;人们对面缺陷的研究知之甚少,相对来说也不太重要。,3.晶格的结构缺陷,在实际应用中,电子和空穴的浓度往往是偏离平衡浓度的,即所谓的非平衡现象是普遍存在的。如果:那么,可以定义 t 为少数载流子寿命。再由Einstein关系可以得到扩散率和扩散长度:在最初的半导体晶体
3、中,截流载流子寿命仅受复合过程限制,因为当时注重于减少俘获效应;但是在半导体辐射探测器的研究中,往往是由测量出的电荷收集效率来推导电荷载流子的寿命的。,4.半导体辐射探测器的有效载流子浓度,Eg(Si)=1.12 eV Eg(Ge)=0.67 eV,两者的本征型探测器远不如PbS探测器,所以要引入杂质。1.非本征 Si 材料的特性引入杂质在Si禁带中建立起相应的局部能态,外界红外辐射会引起杂质能级的光激励,光电导响应与这些能级到导带或满带的电子或空穴跃迁有关。2.非本征 Si 探测器的特点硅的介电系数低,具有合适能级的杂质的溶解性高,所以能够制成红外吸收系数较大的非本征型硅探测器。3.非本征硅
4、探测器的应用:热成像技术,红外探测器。,二、非本征硅红外探测器材料,5.5 III-V族化合物半导体光电材料,GaAs的禁带宽度比Si稍微高一点,有利于制作在较高温度下的器件;其迁移率较高,约是Si中电子的5倍。GaAs为闪锌矿结构,密度为5.307g/cm-3,主要为共价键形式。能带结构为直接跃迁型,有较高的发光效率。其禁带中浅杂质电离能小。,一、GaAs体系光电薄膜的量子阱、超晶格结构1.GaAs材料的特性,GaAs单晶的制备主要有:GaAs的合成,As蒸气压的控制。图为水平舟生长法。,(1)半导体超晶格、量子阱的概念能够对电子的运动产生某种约束并使其能量量子化的势场称为量子阱。半导体的超
5、晶格结构与多量子阱结构相似。,2.半导体超晶格、量子阱材料,(2)半导体超晶格、量子阱的能带结构特点量子阱和超晶格能带结构,特别是能带在异质结处的形状,对其量子效应起着决定性的作用,而能带结构又取决组成材料的物理化学性能以及界面附近的晶体结构。,2.半导体超晶格、量子阱材料,(3)半导体超晶格、量子阱的分类 按组成材料的晶格匹配程度可分为:晶格匹配量子阱与超晶格 和 应变量子阱与超晶格。按组成材料的成分来分:固定组分量子阱与超晶格、组分比渐变超晶格与量子阱 和 调制掺杂的量子阱与超晶格。一维、二维、三维量子阱与超晶格。(4)半导体超晶格、量子阱的一般应用 超高速、超高频微电子器件和单片集成电路
6、;高电子迁移率晶格管(HEMT),异质结双极晶体管(HBT),量子阱激光器、光双稳态器件(SEED)。,2.半导体超晶格、量子阱材料,(1)I类红外超晶格材料利用量子遂穿效应,形成垂直于层面的电流超晶格材料。AlGaAs/GaAs,3.超晶格量子阱红外探测器材料,(1)I类红外超晶格材料量子红外探测器(QWIP)是利用较宽带材料制作的,并且采用了量子阱结构。,3.超晶格量子阱红外探测器材料,(1)II类应变红外超晶格材料由于InAsSb和InSb之间的晶格常数相关较大,因些属于应变超晶格结构。,3.超晶格量子阱红外探测器材料,InAsSb/InSb,(2)II类应变红外超晶格材料:用MBE或M
7、OCVD工艺在衬底上生长缓冲层。这种材料应用如下特点:键强度好,结构稳定;均匀性好;波长易控制;有效质量大;隧道电流小;,3.超晶格量子阱红外探测器材料,(3)III类红外超晶格材料以 Hg 为基础的超晶格材料。交替生长HgTe和CdTe薄层。特点如下:,3.超晶格量子阱红外探测器材料,禁带宽度和响应截止波长由HgTe层厚度控制;有效质量比较大;p型HgTe-CdTe超晶格有极高的迁移率。,InSb是一种直接跃迁型窄带宽化合物半导体,具有电子迁移率高和电子有效质量小的特点。它适于制备光伏型、光导型和光磁电型三种工作方式的探测器,各自有不同的特点优势。提纯工艺和单晶制备工艺的发展,到上个世纪中期
8、,用优质InSb单晶制备单元光电探测器已达到背景限。红外光电技术的发展使其经历了从单元向多元、从多元线列向红外焦平面阵列 IRFPA发展的过程。InSb薄膜有同质外延与异质外延之分,前者已经有人用磁控溅射法和MBE法进行了生长。,二、InSb光电材料特性,GaN基III-V族氮化物宽带隙半导体通常是GaN、AlN和InN等材料。禁带宽度一般在2eV以上。其结构上具有多型性,上面三种通常都表现为纤锌矿2H型结构,也可以形成亚稳态的3C结构。氮化物材料的外延生长主要是基于金属有机物气相外延和MBE方法。GaN是直接带隙材料,在禁带宽度以上材料的光吸收系数增加很快,因此表面效应影响较大,设计和制造时
9、要注意。III-V族氮化物用于紫外光电探测器的另一个特点是:此材料可以用外延生长方法形成三元合金体系,并改变三族元素的组分比例。,三、GaN光电薄膜特性及其在紫外探测中的应用1.III-V族氮化物材料的特性,为了获得高质量的薄膜,需要有一种理想的衬底材料,它应该与GaN有着完美的晶格匹配和热匹配。SiC、MgO和ZnO等是与氮化物匹配性较好的材料。蓝宝石,具有六角对称性,容易加工,虽然与GaN之间的晶格失配较大,但适当的缓冲层的蓝宝石衬底可以有效地改善薄膜质量。缓冲层有GaN和AlN两种,外延生长用AlN作为缓冲层可以提高薄膜质量。采用低温GaN缓冲层生长GaN薄膜同样可以提高质量。,2.II
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 获取 材料 II

链接地址:https://www.desk33.com/p-748005.html