第3讲 分类讨论思想.ppt
《第3讲 分类讨论思想.ppt》由会员分享,可在线阅读,更多相关《第3讲 分类讨论思想.ppt(70页珍藏版)》请在课桌文档上搜索。
1、,专题八 数学思想方法,第3讲 分类讨论思想,思 想 方 法 概 述,热 点 分 类 突 破,真 题 与 押 题,思想方法概述,1.分类讨论思想是一种重要的数学思想方法.其基本思路是将一个较复杂的数学问题分解(或分割)成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略.对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题(或综合性问题)分解为小问题(或基础性问题),优化解题思路,降低问题难度.,2.分类讨论的常见类型(1)由数学概念引起的分类讨论.有的概念本身是分类的,如绝对值、直线斜率、指数函数、对数函数等.(2)由性质、定理、公式的限制引起的分类讨
2、论.有的数学定理、公式、性质是分类给出的,在不同的条件下结论不一致,如等比数列的前n项和公式、函数的单调性等.,(3)由数学运算要求引起的分类讨论.如除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数运算中底数的要求,不等式两边同乘以一个正数、负数,三角函数的定义域等.(4)由图形的不确定性引起的分类讨论.有的图形类型、位置需要分类:如角的终边所在的象限;点、线、面的位置关系等.,(5)由参数的变化引起的分类讨论.某些含有参数的问题,如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,或对于不同的参数值要运用不同的求解或证明方法.(6)由实际意义引起的讨论.此类问题在应
3、用题中,特别是在解决排列、组合中的计数问题时常用.,3.分类讨论的原则(1)不重不漏.(2)标准要统一,层次要分明.(3)能不分类的要尽量避免或尽量推迟,决不无原则地讨论.,4.解分类问题的步骤(1)确定分类讨论的对象,即对哪个变量或参数进行分类讨论.(2)对所讨论的对象进行合理的分类.(3)逐类讨论,即对各类问题详细讨论,逐步解决.(4)归纳总结,将各类情况总结归纳.,热点一 由数学概念、性质、运算引起的分类讨论,热点二 由图形位置或形状引起的讨论,热点三 由参数引起的分类讨论,热点分类突破,热点一 由数学概念、性质、运算引起的分类讨论,变式训练1,答案C,(2)已知数列an的前n项和Snp
4、n1(p是常数),则数列an是()A.等差数列B.等比数列C.等差数列或等比数列D.以上都不对,解析Snpn1,a1p1,anSnSn1(p1)pn1(n2),当p1且p0时,an是等比数列;当p1时,an是等差数列;当p0时,a11,an0(n2),此时an既不是等差数列也不是等比数列.答案D,热点二 由图形位置或形状引起的讨论,解析画出不等式组表示的平面区域(如图).,当x1时,1y2,有2个整点;,当x0时,0y3,有4个整点;当x1时,1y4,有6个整点;当x2时,2y5,有8个整点;所以平面区域内的整点共有246820(个).答案20,(2)设圆锥曲线T的两个焦点分别为F1,F2,若
5、曲线T上存在点P满足|PF1|F1F2|PF2|432,则曲线T的离心率为_.,解析不妨设|PF1|4t,|F1F2|3t,|PF2|2t,,若该圆锥曲线是双曲线,则有|PF1|PF2|2t2a,,变式训练2,答案D,解析若PF2F190,则|PF1|2|PF2|2|F1F2|2,,若F2PF190,,则|F1F2|2|PF1|2|PF2|2|PF1|2(6|PF1|)2,,解得|PF1|4,|PF2|2,,例3(2014四川改编)已知函数f(x)exax2bx1,其中a,bR,e2.718 28为自然对数的底数.设g(x)是函数f(x)的导函数,求函数g(x)在区间0,1上的最小值.,热点三
6、 由参数引起的分类讨论,解由f(x)exax2bx1,有g(x)f(x)ex2axb.所以g(x)ex2a.因此,当x0,1时,g(x)12a,e2a.,所以g(x)在0,1上单调递增,因此g(x)在0,1上的最小值是g(0)1b;,因此g(x)在0,1上的最小值是g(1)e2ab;,所以函数g(x)在区间0,ln(2a)上单调递减,在区间(ln(2a),1上单调递增.于是,g(x)在0,1上的最小值是g(ln(2a)2a2aln(2a)b.,g(ln(2a)2a2aln(2a)b;,g(1)e2ab.,变式训练3,(1)若函数g(x)过点(1,1),求函数f(x)的图象在x0处的切线方程;,
7、所以所求的切线的斜率为3.又f(0)0,所以切点为(0,0),故所求的切线方程为y3x.,(2)判断函数f(x)的单调性.,当a0时,因为x1,所以f(x)0,故f(x)在(1,)上单调递增.,故f(x)在(1,1a)上单调递减;,故f(x)在(1a,)上单调递增.,综上,当a0时,函数f(x)在(1,)上单调递增;当a0时,函数f(x)在(1,1a)上单调递减,在(1a,)上单调递增.,分类讨论思想的本质是“化整为零,积零为整”.用分类讨论的思维策略解数学问题的操作过程:明确讨论的对象和动机确定分类的标准逐类进行讨论归纳综合结论检验分类是否完备(即分类对象彼此交集为空集,并集为全集).做到“
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第3讲 分类讨论思想 分类 讨论 思想

链接地址:https://www.desk33.com/p-740423.html