数学建模模糊数学理论.ppt
《数学建模模糊数学理论.ppt》由会员分享,可在线阅读,更多相关《数学建模模糊数学理论.ppt(62页珍藏版)》请在课桌文档上搜索。
1、1 模糊数学的基本概念2 模糊关系与模糊矩阵 3 模糊聚类分析模糊模式识别模糊综合评判,模糊数学,1 模糊数学的基本概念,1.1 模糊数学概述,模糊数学是研究和处理模糊性现象(或概念)的数学方法,而不是把数学变成模模糊糊的东西,它所要处理事物的概念本身是模糊的,即一个对象是否符合这个概念难以确定,我们称这种不确定性为模糊性。,它与普遍性不同,普遍性是是指一种可用来表达整个明确定义的现象和活动的特性。,它与随机不确定性不同,随机的不确定性也是概率的不确定性,其研究的事件本身有着明确的含义,只是由于发生的条件不充分,而使得在条件与事件之间不能出现决定的因果关系,从而事件的出现与否表现出不确定性,这
2、种不确定性称为随机性。例如“掷一个骰子时出现4点”是一个明确的事件,但掷骰子时并非只出现4点,我们说出现4点的概率是1/6。,回总目录,回本章目录,模糊数学所研究的不确定性是:它所处理事物的概念本身是模糊的,即一个对象是否符合这个概念难以确定,称这种不确定性为模糊性。如“青年人”、“老年人”、“漂亮的女生”、“黎明时刻”、“班上高个子学生”等。我们无法明确地指出,从几点钟开始就算黎明,或身高多少就是高个子。这种概念具有模糊性,无法用普通集合来描述。为了定量地表示这类模糊概念,并研究它们的客观规律性,就必须把普通集合的概念加以拓广,借助于模糊集合来研究。,论域:如果将所讨论的对象限制在一定范围内
3、,并记所讨论的对象全体构成的集合为U,称之为论域。普通集合特征函数设U是论域,A是U的子集,定义如下映射为集合A的特征函数:(集合A可由特征函数唯一确定),1.2 模糊集与隶属函数,模糊集合隶属函数1.2.1模糊集与隶属函数的概念1)论域U上的模糊集合A指:对于任意的uU,总是以某个程度 属于A;即对于所研究的某个对象,我们不能确定它有或者没有一个模糊概念所描述的性质。而只能讨论它具有这种性质的程度是多少。用集合论的观点说,定义一个模糊集合,我们无法确定一个元素是否属于这个模糊集合,而只能说它有多大程度属于这个模糊集合。这种从属程度我们用0,1之间的一个数来表示。这就是Zadeh的隶属函数的想
4、法。,2)隶属函数设在论域U上给定了一个映射,则定义了U上的一个模糊子集A,映射 称为模糊集A的隶属函数,称为x对模糊集A的隶属程度,也可表示为A(x)。,3)模糊集的表示,4)模糊集的运算 模糊集与普通集一样,有相同的运算和相应的运算规律。A与B的并集、交集及A的补集定义如下:,1.2.2 隶属函数的确定方法 模糊数学的基本思想是隶属程度的思想,应用模糊数学方法建立数学模型的关键是建立符合实际的隶属函数,下面介绍几种常用的确定隶属函数的方法:1)模糊统计方法 它可以算是一种比较客观的方法,主要是基于模糊统计实验的基础上,根据隶属度的客观存在性来确定的。,模糊统计试验的四要素为:假设我们做n次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 模糊 理论
课桌文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。





链接地址:https://www.desk33.com/p-229698.html