初中数学课堂教学设计(7篇).doc
《初中数学课堂教学设计(7篇).doc》由会员分享,可在线阅读,更多相关《初中数学课堂教学设计(7篇).doc(30页珍藏版)》请在课桌文档上搜索。
1、初中数学课堂教学设计(7篇) 初中数学课堂教学设计(篇1)一、教学目标1、了解二次根式的意义;2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;3、掌握二次根式的性质和,并能灵活应用;4、通过二次根式的计算培养学生的逻辑思维能力;5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。二、教学重点和难点重点:(1)二次根的意义;(2)二次根式中字母的取值范围。难点:确定二次根式中字母的取值范围。三、教学方法启发式、讲练结合。四、教学过程(一)复习提问1、什么叫平方根、算术平方根?2、说出下列各式的意义,并计算(二)引入新课新课:二次根式定义:式子叫做二次根式。对于请同学们讨论论应注意
2、的问题,引导学生总结:(1)式子只有在条件a0时才叫二次根式,是二次根式吗?呢?若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。例1当a为实数时,下列各式中哪些是二次根式?例2 x是怎样的实数时,式子在实数范围有意义?解:略。说明:这个问题实质上是在x是什么数时,x3是非负数,式子有意义。例3当字母取何值时,下列各式为二次根式:分析:由二次根式的定义,被开方数必须是
3、非负数,把问题转化为解不等式。解:(1)a、b为任意实数时,都有a2+b20,当a、b为任意实数时,是二次根式。(2)3x0,x0,即x0时,是二次根式。(3),且x0,x0,当x0时,是二次根式。(4),即,故x20且x20,x2。当x2时,是二次根式。例4下列各式是二次根式,求式子中的字母所满足的条件:分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。解:(1)由2a+30,得。(2)由,得3a10,解得。(3)由于x取任何实数时都有|x|0,因此,|
4、x|+0。10,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。(4)由b20得b20,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。初中数学课堂教学设计(篇2)知识技能目标1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;2、利用反比例函数的图象解决有关问题。过程性目标1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。教学过程一、创设情境上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比
5、例函数(k是常数,k0)的图象,探究它有什么性质。二、探究归纳1、画出函数的图象。分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0。解1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(6,1)、(3,2)、(2,3)等。3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。上述图象,通常称为双曲线(hyperbola)。提问这两条曲线会与x轴、y轴相交吗?
6、为什么?学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。学生讨论、交流以下问题,并将讨论、交流的结果回答问题。1、这个函数的图象在哪两个象限?和函数的图象有什么不同?2、反比例函数(k0)的图象在哪两个象限内?由什么确定?3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?反比例函数有下列性质:(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而
7、增加。注1、双曲线的两个分支与x轴和y轴没有交点;2、双曲线的两个分支关于原点成中心对称。以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。三、实践应用例1若反比例函数的图象在第二、四象限,求m的值。分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值。解由题意,得解得。例2已知反比例函数(k0),当x0时,y随x的增大而增大,求一次函数y=kxk的图象经过的象限。分析由于反比例函数(k0),当x0时,y随
8、x的增大而增大,因此k0,而一次函数y=kxk中,k0,可知,图象过二、四象限,又k0,所以直线与y轴的交点在x轴的上方。解因为反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kxk的图象经过一、二、四象限。例3已知反比例函数的图象过点(1,2)。(1)求这个函数的解析式,并画出图象;(2)若点A(5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?分析(1)反比例函数的图象过点(1,2),即当x=1时,y=2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A在反比例函数的图象上,易求出m的值,
9、再验证点A关于两坐标轴和原点的对称点是否在图象上。解(1)设:反比例函数的解析式为:(k0)。而反比例函数的图象过点(1,2),即当x=1时,y=2。所以,k=2。即反比例函数的解析式为:。(2)点A(5,m)在反比例函数图象上,所以,点A的坐标为。点A关于x轴的对称点不在这个图象上;点A关于y轴的对称点不在这个图象上;点A关于原点的对称点在这个图象上;例4已知函数为反比例函数。(1)求m的值;(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?(3)当3x时,求此函数的最大值和最小值。解(1)由反比例函数的定义可知:解得,m=2。(2)因为20,所以反比例函数的图象在第二、四象限内
10、,在各象限内,y随x的增大而增大。(3)因为在第个象限内,y随x的增大而增大,所以当x=时,y最大值=;当x=3时,y最小值=。所以当3x时,此函数的最大值为8,最小值为。例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。(1)写出用高表示长的函数关系式;(2)写出自变量x的取值范围;(3)画出函数的图象。解(1)因为100=5xy,所以。(2)x0。(3)图象如下:说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。四、交流反思本节课学习了画反比例函数的图象和探讨了反比例函数的性质。1、反比例函数的图象是双曲线(hyperbola)。2、反
11、比例函数有如下性质:(1)当k0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。五、检测反馈1、在同一直角坐标系中画出下列函数的图象:(1);(2)。2、已知y是x的反比例函数,且当x=3时,y=8,求:(1)y和x的函数关系式;(2)当时,y的值;(3)当x取何值时,?3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。4、已知反比例函数经过点A(2,m)和B(n,2n),求:(1)m和n的值;(2)若图象上有两点P
12、1(x1,y1)和P2(x2,y2),且x10x2,试比较y1和y2的大小。 p=初中数学课堂教学设计(篇3)知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。2.通过一元一次方程的学习,体会方程模型思想和化归思想。解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。教学重点建立方程解决实际问题,会通过移项
13、解 “ax+b=cx+d”类型的一元一次方程。教学难点分析实际问题中的相等关系,列出方程。教学过程活动一 知识回顾解下列方程:1. 3x+1=42. x-2=33. 2x+0.5x=-104. 3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。出示问题(幻灯片)。学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。(2)学生对
14、解一元一次方程的变形方向(化成x=a的形式)的理解。通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。活动二 问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本。这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。1.找出问题中的已知数和已知条件。(独立回答)2.设未知数:设这个班有x名学生。3.列代数式:x参
15、与运算,探索运算关系,表示相关量。(讨论、回答、交流)4.找相等关系:这批书的总数是一个定值,表示它的两个等式相等。(学生回答,教师追问)5.列方程:3x+20=4x-25(1)总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?教师提问1:这个方程与我们前面解过的方程有什么不同?学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25)。教师提问2:怎样才能使它向x=a的形式转化呢?学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20。3x-4x=-25-20(2)教师提问3:以上变形依据是什么
16、?学生回答:等式的性质1。归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。师生共同完成解答过程。设问4:以上解方程中“移项”起了什么作用?学生讨论、回答,师生共同整理:通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?学生思考回答。教师关注:(1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?(2)在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。活动三 解法运用例2解方程3x+7=32-2x教师:出示问题提问:解这个方程时,第一步我们先
17、干什么?学生讲解,独立完成,板演。提问:“移项”是注意什么?学生:变号。教师关注:学生“移项”时是否能够注意变号。通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。活动四 巩固提高1.第91页练习(1)(2)2.某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?3.小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。教师按顺序出示问题。学生独立完成,用实物投
18、影展示部分学而生练习。教师关注:1.学生在计算中可能出现的错误。2.x系数为分数时,可用乘的办法,化系数为1。3.用实物投影展示学困生的完成情况,进行评价、鼓励。巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。活动五提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?提问2:本节课重点利用了什么相等关系,来列的方程?教师组织学生就本节课所学知识进行小结。学生进行总结归纳、回答交流,相互完善补充。教师关注:学生能否提炼出本节课的重点内容,如果不能,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 课堂教学 设计

链接地址:https://www.desk33.com/p-215579.html