温度测量与控制课程设计报告书.doc
《温度测量与控制课程设计报告书.doc》由会员分享,可在线阅读,更多相关《温度测量与控制课程设计报告书.doc(9页珍藏版)》请在课桌文档上搜索。
1、电子技术课程设计题目名称:温度测量与控制器 班 级:学 号:姓 名:指导教师:日 期:一、 设计题目温度测量与控制器二、 设计任务与要求温度是表征物体冷热程度的物理量.在工农业生产或科学研究中.经常需要对某一系统的温度进行测量.并能自动地控制、调节该系统的温度。下面设计并制作对某一系统的温度进行测量与控制的电路。电路要求为: 被测温度和控制温度均可数字显示。 测量温度范围为.精度为。 控制温度连续可调.精度为。 温度超过额定值时.产生声、光报警信号。三、 题目分析和内容摘要题目分析:温度测量与控制电路是在实际应用中相当广泛的测量电路。本次设计主要运用基本的模拟电子技术和数字电子技术的知识.同时
2、综合温度传感器的相关应用.实现温度测量与控制电路的设计。内容摘要:本次设计以数字电子技术的基础知识为主:用电压比较器来实现温度控制装置.采用555构成的多谐振荡器来实现声光报警装置.用内置译码器的四输入数码管译码显示温度.A/D转换应用集成芯片完成。同时运用到模拟电子技术中的滤波放大电路的相关知识:在A/D转换前置低通滤波器.来滤除干扰信号.应用放大电路来实现信号幅度与元器件工作范围的匹配。综合传感器知识.设计决定采用热敏电阻构成的桥式电路来实现温度的测量与转换。四、 整体构思和方案选择方案选择:方案一:由555定时器组成多谐振荡电路.时钟电路产生100ms频率时钟.现在就变成了每100ms计
3、数器内所计的数再经分频来作为温度。每100ms到来时.对锁存器电路锁存.锁存以后才能对计数器进行清零。方案二:系统框图如图1所示.温度传感器测量温度.转换成电压信号后经过滤波消除干扰信号.放大电路将所测信号幅度与后续电路的工作范围做一匹配.所得有用信号经过A/D转换专职转换成数字信号。此数字信号有三条路径:一、进入超限报警装置与所设定的温度范围进行比较.若超限则发出声光报警;二、经过码制转换后进入数码管显示当前所测温度;三、进入数字比较器与输入的控制温度进行比较.产生温度控制机构的工作信号.同时显示输入的控制温度。此系统可以对被测体的温度进行实时跟踪测量.并进行有效控制.总体上实现了温度的测量
4、与控制。图1方案三:系统框图如图2所示.温度传感器用来测量被测体的实时温度并转换成电压信号.该电压信号经过滤波放大电路.成为有用信号分两路进入后续电路:一路进入A/D转换电路将其转换成数字信号显示;电压信号的另一路进入电压比较器.与输入控制温度电压信号进行比较.比较结果信号将驱动温度控制装置工作.对被测体的温度进行实时控制.电压比较器的比较结果将决定是否发出声光报警。此方案是将测量温度与输入控制温度转换成电压信号进行比较.从而实现了温度的控制。图2方案选择:方案一:将热电阻由温度的变化通过555定时器构成的多谐振荡器完成V/F变换。利用分频实现控制温度与频率的对应.整个电路中以频率为参数参与温
5、度的控制过程。由于其中计数器、分频器和单稳态触发器等功能设计困难.故舍弃。方案二:将所有的信号都转换成数字信号处理.克服了模拟信号易受干扰的缺点。而且系统的主要处理部件均采用数字式的元器件.从而使信号的模式与之匹配.对于信号处理的精度就有了保证。但是由于其上、下限温度限定电路复杂.故舍弃。方案三:符合要求中控制温度与测量温度的要求。控制电路中以模拟信号为主.实现起来简单且准确。综上所述.考虑到三个方案的优缺点.选择方案三作为我们此次温度测量与控制电路的设计方案。整体构思:总体设计框图如下图3所示.从温度的采集到与设定温度的比较.再到控制过程都是模拟信号.在显示电路中.将模拟信号转换成数字信号显
6、示。主要由以下几个模块构成:温度传感器、A/D转换器、电压比较器、控制电路温控电路、声光报警器、转码电路、显示电路、加热电路。图3五、 具体实现和各部分定性说明及定量计算下面就整体构思中提及的八大模块.依次进行详细的说明。包括:工作原理、原理图、元器件的选择、参数计算。最后附上元件的清单表。各模块设计:1、 温度传感器:a铂测温金属:金属具有随着温度的升高电阻值增大的特性.电阻率与温度的具体关系为:=01+t.其中0为零度时导体的电阻率.为导体的温度系数。利用金属的这一特性.我们可以通过监测金属电阻的变化实现温度测量。制作测温电阻的材料除了铂以外还可以是铜活镍等.而铂的纯度大于99.999%.
7、是最佳的测温材料。常见铂测温电阻的标称电阻值为100.温度系数是385010-6/。标称值的误差影响偏置.而温度系数的误差影响增益。温度跨度越大误差也越大。标称值的误差可用一点调整.而温度系数的误差要由间隔温度的两点调整。当要求很细微的调整温度时.要选用温度系数一致的传感器。b测温基本电路:电路的输出: Eout=R1RVIN /由于分母中有R项的存在.在恒定条件下工作除了传感器的非线性误差外.还有恒压电路产生的误差.使得误差变得更大。为此在恒压下工作必须要有线性校正电路。线性校正电路:恒压工作时.在传感器自身的非线性误差上还有一个由恒压工作带来的非线性误差.不进行校正就无法实现该精度测量。校
8、正的方法采用正反馈线性校正。如图4.在电路中.把运算放大器A 2 的输入反馈到输入端V in.反馈量由R 3、VR 3 、R 4 决定.而且是串联加到V in 。这样V out 大.对传感器所加的电压V B 也大.结果使得V out 变小.实现了线性校正。图42、 A/D转换器A/D转换部分有两种方案:方案一:利用集成芯片AD574.再结合两片74LS2834 位二进制超前进位全加器构成。该方案工作原理是先将模拟量转换成9位二进制数.再将最低一位和前八位相加这样就可以将测量精度提高到0.5.方案二:利用电阻网络实现A/D转换.此种方案要求的比较器个数较多.不符合节约型社会的要求.而且电路复杂.
9、较难准确实现。综合考虑.选择方案一.即AD574来实现A/D转换。设计原理图如下图5所示:滤波放大信号的输出作为A/D转换的模拟量输入.进入引脚20VIN.引脚D0D9作为数字信号输出.当电路图如此连接后就可以实现模数转换功能.当经过滤波放大的电压信号输入时.经过转换就可以输出9位二进制的数字信号。将这9位数字信号的高8位与最低一位相加.从而将转换精度提高。图53、 电压比较器LM324是运放集成电路.电路模型如图6所示。它的内部包含四组形式完全相同的运算放大器.除电源共用外.四组运放相互独立。每一组运算放大器可用图7所示的符号来表示.它有5个引出脚.其中+、-为两个信号输入端.V+、V-为正
10、、负电源端.Vo为输出端。两个信号输入端中.Vi-为反相输入端;Vi+为同相输入端。 LM324的引脚排列见图7。图6图74、 控制电路温控电路由于通过温度传感器测得温度后.将温度值转化为电压值.因此.利用电压值之间的大小关系就可以控制温度的大小。我们调节温度是将其转化为电压的形式.通过改变电压值来实现控制温度与被测温度的比较。所以.利用刚才介绍的LM324电压比较器来完成控制电路的核心控制.由于比较器最小输入电压差为40mV.而温度测量中输出电压精度在5mV.因此需要加大电阻以提高电压值.以实现两个电压的正常比较。控制电路图如下:图8温度控制选择可通过电位器W2来实现通过调节W2可使其中间头
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 温度 测量 控制 课程设计 报告书

链接地址:https://www.desk33.com/p-18977.html