2024大模型在金融领域的应用技术.docx
《2024大模型在金融领域的应用技术.docx》由会员分享,可在线阅读,更多相关《2024大模型在金融领域的应用技术.docx(74页珍藏版)》请在课桌文档上搜索。
1、大模型在金融领域应用技术2024大使通至金融睢城的应用技术与安全白皮书目录Ol/概述041.1大语言模型技术发展概述041.2大模型引领中国金融领域科技的国际化发展0502/大模型应用技术分析072.1 大模型在金融领域的应用挑战072.2 金融领域的行业大模型开发技术082.3 行业大模型在金融领域的应用框架242.4 大模型的应用实践3103/大模型的应用安全353.1 大模型应用在金融业务领域的风险分析及防控措施353.2 大模型风险治理框架借鉴5204/大模型评测564.1 通用大模型评测框架564.2 大模型在金融领域的评测概述594.3 大模型在金融领域的评测实践6505/金融大模
2、型发展中的人才培养695.1 人才需求分析715.2 人才教育体系的调整与创新725.3 跨界合作与持续学习机制735.4 人才评估与认证体系74Ol概述1.l大语言模型技术发展概述语言建模(1.anguageModel)可分为四个发展阶段,分别为统计语言模型、神经语言模型、预训练语言模型、大模型语言模型。其中最早的统计语言模型基于统计学习来预测单词,而后演进成为神经语言模型基于神经网络方法预测单词。在神经网络语言模型中,通过使用神经网络,将单词映射为向量作为网络模型的输入来估计单词序列的概率。随着注意力机制被引入,注意力层(Attention1.ayers)在文本中建立了词之间的相关性,使得
3、模型在生成下一个单词时,考虑到整体语句的意思,从而建立了Transformer架构,提升了模型理解和生成语言的能力。但随着参数的增加,需要大量人力来标注数据,因此OPenAl提出了预训练语言模型(GenerativePre-TrainedTransformer),通过无监督学习在大规模无标签语料库上进行预训练任务,在预训练中模型学会了基于前一个单词预测后一个单词。除此之外,模型还可以针对特定的任务基于更小的数据集进行微调,提升在特定领域的性能。基于此,通过不断直加数据增加模型参数规模以及优化模型的提示工程,不仅可以解决更复杂的任务,同时也拥有了更强大的文本涌现能力从而演进成为大模型语言模型(以
4、下简称“大模型大模型浪潮爆发后,国内各企业纷纷推出自研大模型,大模型应用迎来了蓬勃发展的阶段。据测算,我国2030年基于大模型的生成式人工智能市场规模有望突破千亿元人民币。与此同时,国内垂直行业领域的大模型也成为各个行业头部企业未来的发展趋势之一,其中前沿的垂类大模型涉及领域包括媒体影视、电商、广告营销、游戏、医疗、教育及金融行业。比如在金融领域,大型科技企业如华为推出了盘古金融大模型,而蚂蚁集团则在外滩大会发布了金融大模型AntFinG1.W并应用于蚂蚁集团内部产品“支小宝”和“支小助”。金融行业大模型在所有行业垂直大模型中落地速度相对较快。金融领域拥有天然的大量数据积淀,从而为大模型应用提
5、供了良好的数据基础。同时金融领域大模型的应用场景较多,基于这些不同的场景,大模型有助于从不同角度提升原有从业人员及机构的工作效率。比如大模型情绪分析的功能可帮助从业者基于投资者情绪状态预测股票的价格;大模型精确度的提升可帮助从业者预测市场走势,大模型可基于过去大量的金融数据学习预测未来市场趋势帮助投资者和金融机构做出更合理的决策;而复杂任务的处理可协助从业者将大模型用于交易策略上,通过分析大量交易信息,大模型或可识别交易中的风险参数并给出风险防控策略。1.2大模型引领中国金融领域科技的国际化发展因此,通过提升金融服务的效率和质量,大模型可提升我国金融机构的核心竞争力。首先大模型的自然语言理解与
6、内容生成能力可以与用户进行多轮问答对话,提升金融客服的服务效率。其次,通过大模型进行智能数据挖掘处理,金融机构能够更快速准确地获取市场趋势的洞察,做出更明智的决策。同时,大模型可以迅速了解各国的法律、监管规定和市场动态,为金融机构提供国际化的业务洞察和决策支持,帮助中国从业者更好地理解和适应国际市场的业务需求和规则。海外金融科技公司已经在积极探索和持续深化大模型在金融服务领域的应用。Bloomberg已推出BloombergGPT,一个基于500亿参数训练的应用于金融领域自然语言处理的大模型。据研究,当前此大模型在金融任务包括金融资讯分类任务(FPB),预测特定领域的金融新闻及话题(FiQAS
7、),股指推理(ConFinQA)等特定任务上的表现大幅领先于现有的近似规模的开放模型2。BloombergGPT的推出说明海外在大模型金融科技应用方面已经取得了一定的成果。除此之外,一些传统金融机构也通过基Wuetal,(BloombergGPT:A1.arge1.anguageModelforFinance础大模型的应用提升业务竞争力,大型国际投行MorganStanley已将GPT-4应用在财富管理领域打造内部智能助手从而辅助其财富管理顾问快速搜索所需资讯,高效地为客户提供服务。与此同时头部对冲基金Citadel也拟在全公司各条业务线中应用ChatGPT,提升业务运作效率。而我国大模型和数
8、字金融已有较好的产业发展基础,宜抓住此轮大模型科技变革机遇,进一步提升我国数字金融国际竞争力。2023年中央金融工作会议提出将数字金融上升到国家战略部署的新高度,而大模型等新技术将进一步扩展金融科技的发展空间。根据金融科技发展规划(2022-2025年),目前应要抓住全球人工智能发展新机遇,深化人工智能技术在金融领域的应用。因此,我们应把握大模型技术浪潮,提升金融科技全球竞争力。大模型应用技术分析022.1大模型在金融领域的应用挑战由于金融行业的专业性、严谨性、合规性等特点,在把大模型技术应用到金融领域时,需要解决下述挑战,如图2-1所示。通用大模型的金融专业性不足金融领域具有高度的专业性,涵
9、盖了复杂的金融理论、模型和实践,有着独特的术语内涵和表达方式。这些内容在常规的大数据训练集中往往表现不足,使得通用大模型在理解复杂的金融概念和操作上显得力不从心。通用大模型的金融情境理解能力不足金融市场高度情境敏感,同一事件在不同的情境下可能释放出不同的信号。例如,某一公司发布的财务报告如果不符合市场预期,对于该公司而言可能是负面的,但对于寻求低估值入市的投资者而言却可能是一个机会。通用大模型很难精准把握这种情境下的语义差异和心理预期,这就要求模型能够更加敏感地对待金融语境和事件,需要对这些模型进行金融情境的深度训练和优化。通用大模型难以完成较复杂的金融指令金融领域在交易过程中存在大量较复杂的
10、工具指令,如限价单、止损单等,都需要精确的表达和执行。这些指令往往与特定的金融逻辑紧密相关,通用大模型如果不能准确执行这些复杂的金融指令,就很难在金融领域中得到有效应用。通用大模型难以满足金融场景的定制化需求金融领域具有高度的多样性,不同的机构和场景可能有着截然不同的需R例如,投研场景会关注实时热点分析,投顾场景需关注投资者安抚等。通用大模型无法满足这些多样化和定制化的需求,从实践来看在落地过程中还涉及到具体的定制化调优。通用大模型难以满足金融领域应用的合规要求金融市场受到严格的法规制约,包括反洗钱(AM1.)、客户了解程序(KYC)、数据保护法规、适当性义务等。这些法规要求金融机构在处理客户
11、数据和执行交易时必须遵循特定的规则和程序。通用大模型可能在设计时没有充分考虑这些合规性问题,因而在应用时可能无法确保机构的业务操作符合监管要求。图2T大模型应用到金融领域时需解决的挑战面对上述挑战,金融机构在应用大模型到金融业务场景的过程中,一般需要经过两个主要步骤:一是从通用大模型进一步训练调优出专业的大模型;二是以大模型为核心,结合金融专业知识库、金融专业工具库、智能体、安全合规组件等构成一个可满足金融领域安全应用要求的应用系统,来支撑在金融应用各场景中的应用,如下图所示。金融工具使用图2-2大模型在金融领域落地应用路线图示意2.2金融领域的行业大模型开发技术2.2.1开发技术框架一个完整
12、的大模型构建和应用流程如下图所示,包括:从数据收集和处理开始,通过领域适配训练使模型理解金融语境,然后通过性能优化确保模型的实用性和高效性,接着处理幻觉问题以提高事实性,最终实现复杂推理的能力。模型部署层大模型复杂推理XoT智能体2.2.6.12.2.6.2模型部署层行业大模型部署与推理优化内存管理请求批处理模型量化2.2.4.12.2.4.22.2.4.3幻觉降低实时性幻觉2.2.5.1金融行业领域适配训练(2.2.3)模型训练层参数微调低资源领域适配2.2.3.1与人对齐2.2.3.2忠实性幻觉2.2.5.2金融行业数据收集与梳理数据层金融数据收集2.2.2.1金融指令收集2.2.2.2金
13、融指令增强2.2.2.3图2-3大模型开发技术框架框架中各层主要关注的问题如下: 数据层:构建大模型的第一步是数据收集和处理,这涉及搜集金融领域的大量数据集,包括公司公告、金融新闻、投资研报等。此外,为了使大模型具备处理下游各类金融任务的能力,还需要收集多样的、高质量的金融指令数据。 模型训练:此处主要关注大模型领域适配训练,通常包括有监督的参数微调和对齐技术,以调整模型对金融术语、概念和上下文的理解,使其更好地适应金融行业需求,并符合人类价值观。此外,还需要考虑到低资源条件下领域适配技术,以满足实际应用中成本和条件的要求。 模型部署:金融应用中模型的快速响应至关重要。需要考虑在特定的硬件资源
14、下,如何提高模型的推理效率,从而改善用户体验和决策支持的实时性。 复杂推理:金融场景的复杂推理能力是大模型的高级功能,允许模型进行多步推理和决策支持,这通常涉及到构建复杂的推理链、使用情景模拟和智能体决策技术等。 幻觉降低:金融领域的高准确率和事实性要求,需要大模型能够有效处理幻觉问题以降低误导性决策风险,这包括开发和应用技术来识别和纠正模型在生成预测或解释时可能产生的忠实性幻觉和事实性幻觉等。2.2.2金融数据收集与梳理2.2.2.1 金融数据集收集金融数据集的构建是一项综合性工程,涉及预训练数据、指令数据和安全数据这三种主要类别(如表2-1所示),每一类别的数据都对大型金融语言模型的训练起
15、到不可或缺的作用。数据类别描述主要数据来源具体描述预训练数据负责为模型输送必要的语境认知、语言结构理解以及广泛的知识背景。在金融领域的大型模型预训练过程中,引入专业金融数据是至关重要的,它确保了模型能够准确把握金融行业特有的知识和表达风格,与通用大模型不同,金融语料往往存在获取困难,数据非结构化等特点企业财务报告包括但不限于财务报表、盈利预测和负债情况等。这些数据主要来源于公司的年度和季度报告,可通过上市公司的公告、证券交易平台以及金融数据服务供应商获得。使用这些数据需对表格、图表等进行转换,以便模型能够解析和理解其结构化的数据格式金融领域学术论文与书籍这些文献深入探讨金融理论的基础知识,包含
16、专业教材、投资指南、个人理财策略、经济学原理等内容。这些资源可以通过学术数据库或图书馆访问行业分析报告及市场研究这类报告提供关于特定行业或市场的深入分析和洞见。源自金融咨询公司和市场研究机构的报告往往需要通过商业采购来获取金融产品说明诸如基金投资策略、保险条款等介绍性资料,这些信息多由券商、基金公司以及保险产品供应商提供构建金融指令集的目的是使人工智能模型适应金融领域的专业性和受杂性,增强对金融术语、计算、规范的理解与应用能力。这为用户提供精准、合规的专业建议和决策支持,同时满足特定金融角色的需求,推动金融多样化服务金融知识指令覆盖金融、投资、经济、会计等基础理论,和针对保险、基金、证券等具体
17、金融产品和服务的行业应用知识,金融知识指令有助于提高模型在处理专业金融问题时的准确性和专业表达指令数据金融计算指令包括财务分析和复杂计算公式的操作,金融计算指令不仅要求大模型具有数值计算能力,并且需要有将金融问题转化为计算问题的理解能力,相关指令可以使模型具备执行精确计算的能力,帮助用户做出更好的财务决策金融遵循指令金融行业受到严格的监管和合规要求,具有高度专业与严谨的特性。金融遵循指令确保输出内容符合金融行业规范和写作标准金融角色指令大模型的应用受众包含专业的投资研究员以及非金融专业用户,通过构建不同的金融角色,如投资顾问、分析师,基金经理等,在构建具体应用时可以使模型更好地服务于特定的用户
18、群体。大模型在提升知识与表达能力的同时,需要具备安全底线,不能表达不符拒答数据集此数据集确保在大模型遇到敏感议题、潜在的隐私泄露风险、法律合规约束,以及可能导致误解的金融咨询请求时,能够恰当地选择不予回答。构建此数据集的挑战在于准确定义拒答的边界,确保模型在遵循合规性的同时,依然能够提供有价值的信息。该数据集需定期更新,以确保其内容与最新的监管政策和行业规范同步安全数据合金融、人道价值观的问题,也不能出现频繁拒答的情况,从而误导用户,这一部分的数据构建往往需要具备专业金融知识的专家协助金融价值观该数据集涵盖了与金融行业伦理标准和法律规定相契合的案例、规章及导则,旨在训练大模型在提供咨询服务时,
19、确保输出内容符合行业的合规性标准例如,模型在未持牌的情况下,应避免提供具体的投资建议、预测市场走势或对板块、市场、股指未来点位进行预判,同时不得对国内市场进行不当描述表2-1金融数据集类别2.2.2.2 金融指令数据集构建与增强高质量金融指令数据集的构建对大模型在金融领域的应用效果提升非常重要。大模型在特定场景中应用时,其核心能力之一是对人类指令的准确响应,以提供与人类意图和价值观一致的反馈。这一能力依赖于有监督微调,即使用成对的(指令,响应)数据对模型进行进一步训练。这种训练方法以“遵循用户指令”为目标,约束模型输出,以确保其在处理请求和查询时的行为符合预期。在金融领域,准确和专业的数据对于
20、风险评估和决策至关重要,当前金融数据非标准化和碎片化问题如数据类型和格式的混杂、知识来源的分散,制约了大模型的应用效果。金融指令数据集构建主要面对数据质量不一和高质量数据稀缺的挑战。指令微调数据集的发展历程如图2-4所示。当前技术解决方案主要在两个方向寻求突破:一是指令生成技术的创新,通过设计预期形式和自动化方法(如自动化的指令生成器)来批量生成高质量数据;二是指令处理技术的改进,旨在优化数据筛选和构建过程,确保即便在低质量数据的情况下也能有效微调。通过上述策略,大模型能够更准确、有效地处理复杂金融场景中的指令,提升其在实际金融应用中的可靠性和专业性。发展初期提出数据集构建原则指令形式创新指令
21、微调技术的发展始于2021年4月发布的aSuperNaturalInstructionsV1m数据集。这一数据集首次提出了包含76种不同类型的1616个自然语言处理任务的指令数据集。其任务实例格式基于成对的(输入、输出),其中输入代表人类指令,输出代表模型的期望回答。在此数据集上进行微调的模型不仅能理解定义特定任务的人类指令,还能泛化到训练中未见过的其他任务的人类指令。随后,基于该思路,还出现了如F1.AN等数据集,这些数据集进一步扩大了任务种类和数量,以提高模型的表现。围绕构建高质量指令微调数据集,产生了多项工作。例如,1.IMA(1.essIsMoreforAlignment)提出了一种对
22、齐原则,侧重于提供对人类指令有帮助的、能充分传达相关事实、知识和信息的高质量指令数据。基于这种原则,UMA构建了一个小型但高质量的数据集,其回答受到人类更大的偏好。Dromedary则采取了另一种基于原则的指令微调方法,强调生成详实可靠、符合道德标准的回答。随着指令微调数据集的研究深入,新的指令形式被提出。OrCa项目引入了“足迹解释”和“逐步思维过程”等信号,通过精心筛选构建的指令数据集,更深入地学习大语言模型的推理过程。“TextbooksAreAllYouNeed”则提出了一种新颖的指令集收集方式,重点关注于代码领域,通过构建一个小型的、教科书式由易到难得高质量数据集来达到超越大型模型的
23、性能。TUIU探索了混合不同质量数据源的模型表现,发现提高指令多样性能有效提升指令微调效果。图2-4指令微调数据集的发展历程自动化指令生成技术正成为当前解决数据分布不平衡和质量参差不齐等问题的关键。如图2-5所示,主要包括自指令方法、进化指令和指令适应等技术。这些发展展示了自动化金融指令数据生成技术在提高模型在复杂任务中表现、降低人工成本、以及提升数据生成多样性和质量方面的重要作用。随着这些技术的不断进步,可以预见大模型可以更好解决在金融应用中的数据稀缺挑战。自指令方法进化指令的发展指令适应的创新自指令方法(Self-Instruct)通过prompting,利用少量高质量种子指令数据集作为点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 模型 金融 领域 应用技术

链接地址:https://www.desk33.com/p-1424168.html