欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    Fuel Cell Hybrid Drive Train:燃料电池混合动力传动系统.docx

    • 资源ID:981455       资源大小:813.89KB        全文页数:53页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    Fuel Cell Hybrid Drive Train:燃料电池混合动力传动系统.docx

    FuelCellHybridDriveTrainMasterThesisinEnergyEngineeringJanuary2021PatrykKinnSupervisors:JoachimLindstromAzraSelimovic1.arsBackstromExaminatior:RobertEklundAbstractThisthesispresentsafuelcellhybriddrivetrainstudyofa26tondistributiontruckregardingthefuelconsumption.TheinvestigationismadeusingamodelimplementedinSimulink.TheconceptvehicleisaVolvoFM9,wheretheconventionaldieselpowertrainisreplacedbyanelectricaldrivesystem.TheelectricalpropulsionmotorispoweredbyaprotonexchangemembranefuelcellassistedbyaLi-ionpoweroptimisedbattery.Thepowerratingsoftheinvestigatedfuelcellsarebetween150kWand350kWandtheinvestigatedbatterycapacitiesrangefrom4.5kWhto22.6kWh.Twodrivecycles,whereonerepresentsurbandistributionwithnoroadinclineandtheotherrepresentssuburbandistributionincludingroadinclineareused.Byimplementingthreedifferentpowercontrolstrategies,itisshownthatthefuelconsumptioncanbereducedbyupto56%comparedtotheconventionaldieselreferencevehicle.Theurbandistributiondrivecycleisfoundmoresuitableforthefuelcellvehicleapplication.A250kWfuelcelland13.6kWhbatteryconfigurationissuggestedfortheurbandistributiondrivecycle,reducingthefuelconsumptionby53%.Forthesuburbandistributiondrivecyclethesuggestedconfigurationconsistsofa350kWfuelcellanda17.8kWhbattery,reducingthefuelconsumptionby25%.AcknowledgementsThereareseveralpeoplethatIwouldliketomentionandthankexplicitlyfortheircontributionsduringthisthesiswork.Thesepeopleare: JoachimJindstromwhosupervisedmeandcontributedgreatlybyhisknowledgeandexperiencewithinthefieldofelectricmachines.Iamgratefulforhiswarm,experiencedandopenmindedguidanceduringtheentireworkingprocessandsupportduringthefinalisationofthereport. AzraSelimovic,foransweringthatveryphonecallduringhertimeabroadthatledtotheworkonthisthesisandforinitiatingthisproject.Iappreciateheradviceduringmywork. AndreasBoden,whotogetherwhitAzrainitiatedthisprojectandhandleditovertotheexperiencedguidanceofJoachim. PaulAdamswhocontributedwithexpertiseonissuesregardinghydrogenstorageandtheEnglishlanguage. JensGrootwhoprovidedthebatterymodelandpatientlyansweredallmyquestions. MikaelHolber,forcompanionshipandinterestingconversationsaboutfuelcelltechnology,martialartsandargentinetango. Theentiregroup6120forthewarmwelcomingIreceived,forcontinuouslyansweringmyquestionsandforgenerouslyprovidingabroadspectrumofexpertise.NomenclatureAA/FIwheelgSJ-IhHEVICEI-SAM1wheelioK1.HVdiesel1.HVh2IfactorMMH2MairmFrontAreaofthevehicleTafelequationconstantVehicleaccelerationFuelcellstackareaDragcoefficientRollingfrictionElectricalVehicleFaradayconstantFuelCellVehicleDragforceForceduetomomentofinertiaofthewheelsForceduetogravityForceduetorollingresistanceSumoftheexternalforcesTractionforceAccelerationofgravityGibbsfreeenergyTotalhydrogenconsumptionHybridElectricVehicleInternalCombustionEngineIntegratedStarterAlternatorMotorMomentofinertiaofthewheelsMomentofinertiaofthemotorCurrentdensityExchangecurrentdensitySpecificheatratio1.owerheatingvalueofdiesel1.owerheatingvalueofhydrogen1.engthfactorVehicleMassMolarmassofhydrogenMolarmassofairMasstransportconstantmMasstransportconstantnNumberofcellsCompressorinletpressureCompressoroutletpressureCompressorpowerPowerenteringthefuelcellPowerdeliveredbythefuelcellMotorpowerMaximummotorpowerWheelpowerAmbientpressurePartialpressuresofhydrogenPartialpressuresofwatervapourSaturationpressureofwaterP2RrrfSOCTTwheellllTm,naxTinTmodeKniaxVocVoOCVVbaseVmaxXgearS0CVohinactVmassTfc,system(icdciselo9h2PartialpressuresofoxygenGasconstantWheelradiusArea-specificresistanceStateofchargeTemperatureWheeltorqueMotortorqueMaximummotortorqueInlettemperatureMaximumoriginaloutputtorqueOpencircuitvoltageOpencircuitvoltageatstandardpressureandtemperatureVehiclespeedVehiclespeedcorrespondingtomotorbasespeedMaximumvehiclespeedGearratioDeltastareofchargeOhmicresistancelossesActivationlossesMasstransportationlossesFuelcellsystemefficiencyDC/DCconverterefficiencyIsentropicefficiencyElectricefficiencyTotalmechanicalderivelineefficiencyInclineangleMolarflowofhydrogenairPairPdieselCOm(OnunotorCOtiuixtWheeICOwheeI(0wleelMolarflowofairAirdensityDieseldensityMotorspeedMaximummotorspeedMaximumwheelspeedWheelspeedWheelaccelerationTableofcontentIntroduction1Thefuelcellvehicle1Prerequisites3Purposeandgoal3Conceptvehicle3Dataandperformancespecification4Drivecycles4Sizing5Performance7Drivecycle10Themodelandcomponents11Thedriver11Thefuelcellsystem11Thefueltank12Thefuelcell13Thecompressor16Theauxiliaryload17Theelectricmotor17Thefinalgear19Thevehiclebody19Thebattery20Thecontroller20Controlstrategy20Powerdemand21Simulations21Batteryandfuelcellsizes21DeltaSOCcorrection22Performanceandfuelconsumption22Results24Performance24Fuelconsumption33Discussion43Performance43Fuelconsumption43General45Conclusions46Futurework47References48IntroductionTheemissionandfuelconsumptionfavourableoperationoftheHybridElectricVehicles(HEVs)haveresultedintremendouspopularityincreaseofthesevehiclesduringthelasttwodecays1.Theelectricvehicleishowevernotanewconceptandthemanufacturingofsuchvehiclesstartedasearlyasbefore1900.FerdinandPorsche,sfirsthybridvehicleproducedin1899wasforinstancepropelledbyfourwheel-mountedelectricmotorswithaseriesdrivelinesolution1.Thelackofinsightinthefinitenatureandintheenvironmentalimpactofthefossilfuels,aswellasthefastdevelopmentoftheinternalcombustionengine(ICE)duringtheFirsWordWarandthelowfuelprices,pushedtheelectricvehiclesaside2.Sincethen,theICEvehicleshavedominatedtheroadsandhavenowprobablydonethatfarlongerthananyofthosedrivingthemtodaycanremember.Theinfrastructure,performancedemands,manufacturingprocessandmanyotheraspectshavebeeninfluencedandformedbythisdominance.Nowhowever,whentheenvironmentalimpactofthetrafficcausedpollutionisbecomingvisibleandthefossilfuelreserveofthisplanetfadesrapidly,newpossibilitiestodevelopedalternativepowertrainconceptsarise.Thisdevelopmentmayevenbeconsideredasnecessaryifthefreedomofusingfastandflexiblepersonalandgoodstransportsarenottobeabandonedmeanwhiletheplanetsenvironmentispreservedforthefuturegenerations.Asubstantialamountofresearchanddevelopmenttime,aswellasfinancialmeansisnowinvestedbythemanufacturersandpoliticalorgansinordertomeetthedemandsfromaconstantlymoreawarepublic.Eveniflargeadvancehasalreadybeenmade,therearestillmanyaspectstobeconsideredandproblemstobesolvedregardingtheHEVsbeforetheycanbefullycommercialized.Twosuchaspectsarethecostandperformanceofthesevehicles.Becauseeveniftheenvironmentalconcernhasbeenbroughttoattention,thecustomersmustbeabletoaffordtheproductandtheproductneedstofulfilitspurpose.Anotheraspectistheoriginofasubstitutionfuelanditsdistribution.Variousresearchanddevelopmentactivitieshaveresultedinavarietyofdifferenthybridsolutions,fromtheelectricmotorassistedbicyclestomoreadvancedpluginhybridcarsandthefuelcellvehicles(FCV).ThisthesesaimstocontributetoageneraleffortofHEVstudybyinvestigatingthefuelconsumptionofafuelcellbaseddrivelinesolutionfora26tonnedistributiontruck.ThefuelcellvehicleWhenthereareatleasttwoformsofenergystoredonboardavehiclethatcanbeusedforpropulsionandiftheenergyinatleastoneofthecasesiselectric,suchavehiclequalifiestobecalledaHEV.SincethisisthecasefortheFCV,wherethepropulsionenergycanbetakenfromthehydrogensuppliedtothefuelcellorfromtheelectricenergystoredinthebattery,thesevehiclescanberegardedasHEVs.ThedrivelineoftheHEVisusuallyoneofthreebasictypes.Onetypeistheseriesdrivelineimposingthatonlyoneenergyformisusedtopowerthepropulsion.Theothertwotypesaretheparallelandcomplexdrivelinesolutions2.Theparalleldrivelineimposethattwoenergyformscanbeusedatthesametimeandthecomplexdrivelineimposethatboththeseriesandparalleldrivelinesareimplementedandthatachoiceismadewhichsolutiontouseinacertainsituation.Allthesedrivelinesolutionshavetheirprosandconswhencomparedtooneanother.However,sincetheenergyusedtopowerthepropulsionmotoroftheFCViselectric,theseriesdrivelinesolutionisonlyonestudiedinthefollowingwork.SincetheFCVispropelledbyelectricenergy,thistypeofvehiclepossesthesamepotentialofemissionfavourabletransportationasthebatterysourcedelectricvehicle(EV).Thefuelcellhowever,givesthebenefitofextendedtravelleddistanceforthesameorevensmallerbatterysize.Thisreductioninbatterydependenceisdesirablesincethebattery,atpresent,canberegardedastheAchillesheelinallhybrids3duetoe.g.lowlifetimeandhighcost.Thefuelcelltechnologyhoweverintroducesotherchallengingaspects.Oneissueistheabsenceoffueldistributioninfrastructure,makingithardtocommercializethefuelcellvehicle.Todealwiththisproblemthereareseveraldemonstrationprojectsofhydrogenhighwaysaroundtheworldandongoingresearchonstoragepossibilities.Inasensethisissueispartiallyaddressedinthisthesis,wherethefuelconsumptionandstoragecapacityisinvestigated.Naturallyithastobekeptinmindthatforthisemissionfavourableconcepttobecomereality,thehydrogenneedstobeproducedanddistributedinequallyemissionfavourableway.Intheidealcasealsothemanufacturingprocess,serviceandtherecyclingprocessallneedtobeemissionfavourable.EveniftheseissuesareofgreatimportanceandstronglyrelatedtotheenvironmentalbenefitsoftheFCVandothertypesHEVs,theyarenotconsideredinthistextandleftforotherinspiredinvestigatorsandfuturestudies.PrerequisitesInthissectionthepurposeandthegoalofthethesesarepresented.Theconceptvehicle,theperformancerequirementsandthedrivecycleschosenarealsopresented.Thefirstsubsectiondealwhitthepurposeandgoalandisfollowedbyamotivationofthevehicleselection.Thefollowingsubsectionsintroducethevehicledata,theperformancerequirementsandthedrivecycleschosenforthefuelconsumptionsimulations.PurposeandgoalThepurposeofthisthesisistoconductaprestudyonahydrogenbasedfuelcellserieshybriddrivetrainforamedium-heavydistributiontruck.Thefocusofthestudyistosimulateandevaluatedifferentsystemlayoutsforthedrivetrainanddefineprosandconsforeachconceptdefinedregardingmainlythefueleconomy.Thebasiccasewillbeanequivalentconventionaldieseldrivenvehicle.Otherimportantpartsoftheworkaretodefineandscalethecomponentsofthesystemsuchashydrogenstorage,battery,electricmachineandfuelcell.Importantaspectsherearetodefinethepowerbalancebetweenthefuelcell,electricmachineandthebattery.Thegoalwiththisthesisistodeliveramodeltakingmostoftheimportantaspectsofthedrivetrainintoaccount.Themodellevelshouldbeaccurateenoughtodeliverreliableresultsforbasicvehicleanalysis.Theresultsarecomparedwiththoseofaconventionaldrivetrainaswellasstateoftheartdiesel-electricparallelhybriddrivetrain.ConceptvehicleThevehiclechosenforthisstudyistheVolvoFM9illustratedinFigure1.Thevehiclechoiceisprimarymotivatedbytwofactors.ThefirstfactoristhelargeamountofreferencematerialandvehicledataspecifiedinthereportontheI-SAMproject4.Thereferencematerialincludesfuelconsumptionoftheconventionalversionofthisvehicle.ThesecondfactormotivatingthechoiceofthevehicleisthepossibilityofusingtheVolvoFM9forcitydeliveryapplications,whichwastheinitialproposalofthetheses.Duringtheliteraturestudyintheinitialpartoftheprojectitwashoweverdiscoveredthatasimilarinvestigationhasalreadybeenperformedforalightdistributiontruck5.Beingnearlytwiceasheavyasthevehiclealreadyinvestigated(FL6),theVolvoFM9waschoseninordertocontributetotheresultsoftheexistinginvestigation.Figure1:TheVolvoFM6.DataandperformancespecificationThephysicaldataofthevehiclearesummarizedinTable1.Table1:TheVolvoFM9dataWeight(loaded)26tonRollingfriction,Cr0.005N/NFrontarea,A9.7m2Dragcoefficient,Cd0.65Wheelradius,r0.492mAuxiliaryload4.4kWThefollowingperformancerequirementshavebeenchosenforthestudy:1.Cruisingability:Thevehicleshallbeabletocruiseat100km/hatlevelground.2.Gradeability:Thevehicleshallbeabletocruiseat40km/hattheinclineof8.7%(5o).3.Acceleration:Thevehicleshallbeabletoperformmaximalaccelerationfromstandstillto100km/hatlevelground.Thevehicleshallbeabletoperformmaximalaccelerationfromstandstillto50km/hattheinclineof8.7%(5°).Aswillbeshownlateron,thegradeabilityrequirementisdemanding.ForcomparisonitcanbestatedthatthehighwayE6,whenpassingtheHaIlandsaseninSwedeninthesoutherndirection,hastheinclineof6%(3.43o).DrivecyclesTwodifferentdrivecycleshavebeenselectedforthestudy.Thesort3drivecycleandthesx365drivecycle.Thesort3drivecycleisasyntheticcyclewithacompletelyflatroadtopologyduringtheentireduration.Itconsistsofanaccelerationsection,aconstantvelocitysection,adecelerationsectionandastandstillsectionrepeatedforthreedifferentconstantvelocities.Theconstantvelocitiesare30km/h,50km/hand60km/h.Duringonesimulationthisdrivecycleisdrivententimes.Thesort3drivecycleisconsideredsuitableforcitydistribution4.Thesx365drivecyclecorrespondtoanactualroadintheneighbourhoodofHallerdtestgroundinSweden,itishillyandcontainsfewstops.Thesx365drivecycleisconsideredsuitableforsuburbandistribution4.DatasummeryforbothdrivecyclesispresentedinTable2.Thereferencespeedofthesort3cycleisshowninFigure2andthecorrespondingspeedofthesx365cycleisillustratedinFigure3,wheretheroadtopologyhasbeenincluded.ThefuelconsumptionofthereferencetruckandtheI-SAMtruckaregiveninTable3.Table2:DriVeCyCledaiaSUmmary4.sx365sort3Durations2150200Distancem356601450Stoptime(%7%20%Averagespeedkmhl6026AveragespeedexcludedstopsknVh6549Maximalspeed(krnh9060RoutetopologyyesnoTable3:Fuelconsumptionofthereferencevehicle4.DrivecycleReferencetruckI-SAMtrucksort35.681/10km4.661/10kmsx3654.291/10km4.08(1/10kmFigure3:Speedandheightprofileofthesx365drivecycleApartfromthefactthatfuelconsumptionofthereferencevehicleforthesetwodrivecyclesisdocumented,thechoiceofsort3cycleismotivatedbythecitydeliverysuitabilitywhilethechoiceofsx365cycleismotivatedbythehillyroadtopologyandsuburbandrivingrepresentation.SizingTheinformationaboutthedrivecyclesincludesvelocityandaccelerationrequirementsaswellastheslopeofthedrivewayduringtheentirecycle.Thisinformation,andtheperformancerequirementinformationstatedintheprevioussection,combinedwiththevehicledataandNewton,ssecondlowofmotioncanbeusedforanestimationoftheelectricmotorrequirementandthegearratio.TractionforceThefirststepinthissizingprocessisthecomputationofthetractionforcethatisrequiredatthewheelsforpropulsionofthevehicle.AspostulatedbyNewtoninhissecondlowofmotion,themotionofthevehiclewilldependontheresultingforcefromallexternalforcesactingonthevehicle.TheseexternalforcesarethetractionforceFtr,therollingresistanceforceFrOM,thedragforceFdandthegravitationalforceFlllgx7.Whenthevehicleisacceleratingtherearealsoadditionalforcesduetothemomentofinertia.Onesuchforce,theforceFhvheelcorrespondingtothemomentofinertiaofthewheels,isincludedinthefo

    注意事项

    本文(Fuel Cell Hybrid Drive Train:燃料电池混合动力传动系统.docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开