欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOCX文档下载  

    化工热力学课后题答案马沛生..docx

    • 资源ID:918987       资源大小:1.24MB        全文页数:99页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    化工热力学课后题答案马沛生..docx

    习题:2-1.为什么要研究流体的PlT关系?答:在化工过程的分析、研究与设计中,流体的压力p、体积V和温度T是流体最基本的性质之一,并且是可以通过实验直接测量的。而许多其它的热力学性质如内能U、牖S、Gibbs自由能G等都不方便直接测量,它们需要利用流体的p-V-T数据和热力学基本关系式进行推算;此外,还有一些概念如逸度等也通过p-V数据和热力学基本关系式进行计算。因此,流体的-丫-7关系的研究是一项重要的基础工作。2-2.理想气体的特征是什么?答:假定分子的大小如同几何点一样,分子间不存在相互作用力,由这样的分子组成的气体叫做理想气体。严格地说,理想气体是不存在的,在极低的压力下,真实气体是非常接近理想气体的,可以当作理想气体处理,以便简化问题。理想气体状态方程是最简单的状态方程:pV=RT23.偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?答:纯物质的偏心因子0是根据物质的蒸气压来定义的。实验发现,纯态流体对比饱和蒸气压的对数与对比温度的倒数呈近似直线关系,即符合:psr=J1-1其中,psr=ITr)Pc对于不同的流体,。具有不同的值。但PitZer发现,简单流体(负、氟、S)的所有蒸气压数据落在了同一条直线上,而且该直线通过7;=0.7,log=-1这一点。对于给定流体对比蒸气压曲线的位置,能够用在7;=0.7的流体与氮、氧、俶(简单球形分子)的logp;值之差来表征。PitZer把这一差值定义为偏心因子G,即G=-log;-L(X)(Tr=0.7)任何流体的。值都不是直接测量的,均由该流体的临界温度,、临界压力Pc值及Tr=0.7时的饱和蒸气压ps来确定。2-4.纯物质的饱和液体的摩尔体积随着温度升高而增大,饱和蒸气的摩尔体积随着温度的升高而减小吗?答:正确。由纯物质的p-V图上的饱和蒸气和饱和液体曲线可知。2-5.同一温度下,纯物质的饱和液体与饱和蒸气的热力学性质均不同吗?答:同一温度下,纯物质的饱和液体与饱和蒸气的GibbS自由能是相同的,这是纯物质气液平衡准则。气他的热力学性质均不同。2-6.常用的三参数的对应状态原理有哪几种?答:常用的三参数对比态原理有两种,一种是以临界压缩因子ZC为第三参数;另外一种是以PitZei提出的以偏心因子0作为第三参数的对应状态原理。2-7.总结纯气体和纯液体PVT计算的异同。答:许多p-V-T关系如RKS方程、PR方程及BWR方程既可以用于计算气体的p-丫-丁,又都可以用到液相区,由这些方程解出的最小体积根即为液体的摩尔体积。当然,还有许多状态方程只能较好地说明气体的p-V-T关系,不适用于液体,当应用到液相区时会产生较大的误差。与气体相比,液体的摩尔体积容易测定。除临界区外,温度(特别是压力)对液体容积性质的影响不大。除状态方程外,工程上还常常选用经验关系式和普遍化关系式等方法来估算。2-8.简述对应状态原理。答:对比态原理认为,在相同的对比状态下,所有的物质表现出相同的性质。对比态原理是从适用于P-V-T关系两参数对比态原理开始的,后来又发展了适用于许多热力学性质和传递性质的三参数和更多参数的对比态原理。2-9.如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则?答:对于真实流体,由于组分的非理想性及由于混合引起的非理想性,使得理想的分压定律和分体积定律无法准确地描述流体混合物的-VI关系。如何将适用于纯物质的状态方程扩展到真实流体混合物是化工热力学中的一个热点问题。目前广泛采用的方法是将状态方程中的常数项,表示成组成X以及纯物质参数项的函数,这种函数关系称作为混合规则。对于不同的状态方程,有不同的混合规则。寻找适当的混合规则,计算状态方程中的常数项,使其能准确地描述真实流体混合物的P-V-T关系,常常是计算混合热力学性质的关键。常用的混合规则包括适用于压缩因子图的虚拟临界性质的混合规则、维里系数的混合规则以及适用于立方型状态方程的混合规则。2-10.在一个刚性的容器中,装入了Imol的某一纯物质,容器的体积正好等于该物质的摩尔临界体积区。如果使其加热,并沿着习题图21的P-T图中的1-C-2的途径变化(C是临界点)。请将该变化过程表示在p-V图上,并描述在加热过程中各点的状态和现象。解:由于加热过程是等容过程,1-C-2是一条V=%的等容线,所以在p-V图可以表示为如图的形式。点1表示容器中所装的是该物质的汽液混合物(由饱和蒸汽和饱和液体组成)。沿1一2线,是表示等容加热过程。随着过程的进行,容器中的饱和液体体积与饱和蒸汽体积的相对比例有所变化,但由图可知变化不是很大。到了临界点C点时,汽液相界面逐渐消失。继续加热,容器中一直是均相的超临界流体。在整个过程中,容器内的压力是不断增加的。2-11.已知SO?在431K下,第二、第三Virial系数分别为:B=-0.159m3kmo,C=9.0×10-3m6kmo2,试计算:(1) SO2在431K、IOXIo5Pa下的摩尔体积;(2) 在封闭系统内,将IkmolSO2IOXlo5Pa恒温(43IK)可逆压缩到75XIO5Pa时所作的功。解:(1)三项维里方程为:Z=*+3(八)RTVV2将P=IoXlo5Pa,7M31K,B=-0.159m3kmo,C=9.0x10-36.kmol”代入式(八)并整理得:0.279V3-V2+0.159V-9×10-6=0RT迭代求解,初值为:V=3.5m3kmol,P迭代结果为:V=3.39m3kmo,(2)压缩功一dW=xiV由(八)式得:P=RT(/+患+需则:W=-RTr仕+-+与dVJHlVV2V3J=-Rn-B匕当p=75X105Pa时,用(1)同样的方法解出:V=0.212m3kmo,将匕=3.39m3kmo1,V2=0.212kx>L代入式(B)解出:=77×105Jkmo,2-12.试计算一个125cn的刚性容器,在50和18.745MPa的条件下能贮存甲烷多少克(实验值为17g)?分别用理想气体方程和RK方程计算(RK方程可以用软件计算)。解:由附录三查得甲烷的临界参数为:TC=I90.56K,pc=4.599MPa,G=O.011(1)利用理想气体状态方程PV=RT得:I/RT8.314×(273.15+50).1八-43-“公,3-V=7-=1.433×10mmol=143.3cmrlp18.745×106Vm125m=M-=6×=13.95gV143.3(2)RK方程RTan=V-bT05V(V+b)式中:a = 0.42748 R2T51 p =0.42748 x(8.314)2(190.56)24.599 × IO6!.5-=3.2207 Pa .m6 K0-5 mo2b = 0.08664/?; / p =0.08664×8.314×190.564.599 × IO6=2.985 ×105 m3 molap 3.2207 × 18.745 ×106R2T25 (8.314)2 X(323.15)2$=0.4653加2.985 XlO5X 18.745 × IO6D -U.NUODRT8.314× 323.15按照式(2-16a)-!-2.2342 -hr h J+h,b B 0.2083 n =-=和式(2-16b)VZZ迭代计算,取初值Z=I,迭代过程和结果见下表。迭代次数010.208310.87790.237320.88260.236030.88230.236140.88230.2361ZRT=1.265×104m3rol=126.5cm3ol0.8823 ×8.314 × 323.1518.745 × IO6w=M-=16×-=15.81gV126.5可见,用RK方程计算更接近实验值。2-13.欲在一个7810cn?的钢瓶中装入Ikg的丙烷,且在253.2C下工作,若钢瓶的安全工作压力为IOMPa,问是否安全?解:查得丙烷的临界性质为:=369.83K,几=4.248MPa,=0.152m1000n=22.727molT=78K)XK)二n 22.727= 343.63×106m3iDl,使用RK方程:RTa V -b Tq5V(V +b)M44首先用下式计算小b:=0.42748R225pc=0.42748×8.3142×369.8325(4.248×106)=18.296Pam6K05mo2b = 0.08664/?; / pe=0.08664x8314×369>3=6.2771×105my4.248XIO6代入RK方程得:p=9.870MP非常接近于IOMPa,故有一定危险。2-14.试用RKS方程计算异丁烷在300K,3.704X1。5Pa时的饱和蒸气的摩尔体积。已知实验值为V=6.08l×103m3-mo,o解:由附录三查得异丁烷的临界参数为:Tc=407.8K,pe=3.640MPa,=OAllTr=TiTc=300/407.8=0.7357m=0.480+1.574ty-0.1766y2=0.480+1.574×0.177-0.176×0.1772=0.7531a(T)=1+M一刀。$)2=1+0.7531(1-0.735705)=1.2258a(T)= a a(T)= 0.4278 R2T; / p4. (T>=0.42748©2、篙叽38=.6548侬廿)/荷b = 0.08664 RTc PC=O.08664 ×8.314 X 407.8/(3.640 ×106)= 8.0700 × 10-5m3molWR2T21.6548x3.704x105(8.314)2 ×(300)2=0.09853bp _ 8.0700 XlOTX 3.7M X10而 8.314x300=0.01198按照式(2-16a)-8.2245h_+ h,ZRT 0.9061 X 8.314 x 300p3.7M×106,bB0.01198和式(216b)h=VZZ迭代计算,取初值Z=I,迭代过程和结果见下表。迭代次数Zh010.0119810.91480.0131020.90700.0132130.90620.0132240.90610.0132250.90610.01322=6.1015×102m3rl误差(6.031-6.1015)×10-2/6.031×102=-1.2%2-15.试分别用RK方程及RKS方程计算在273K、1000×IO5PaF,氮的压缩因子值,己知实验值为Z=2.0685°解:由附录三查得氮的临界参数为:Tf=126.10K,Pc=3.394MPa,=0.040(I)RK方程a=0.42748R2T5/p=°427"x(8.314(126.1()尸勺$546Pam6Ka5w23.394×IO6,八M/0.08664×8.314×126.10心n.53Zb=0.O8664R7;/p=2.6763×10mmolctCCCddJt(>ap1.5546×100×10617,S=77=1.8264R2T25(8.314)2X(273$=1.1791bp_2.6763X10YXIQOOXO而8.314x273按照式(2-16a)Z=-f-1.5489I-hB11+J-hy+h)和式(2-i6b)o=2=O=H221VZZ迭代计算,取初值z=2,迭代过程和结果见卜.表。迭代次数Zh0123421.8622.12601.69260.88230.589550.63320.55460.69660.2361迭代不收敛,采用RK方程解三次方程得:V=0.00004422m3mol= 1.9485Z叩4.422x10-5X100OxIO,K8.314×273RKS方程。=7/7;=273/126.1=2.1649m=0.480+1.574d7-0.176d=0.480+1.574×0.040-0.176×0.0402=0.5427a(T)=1+讯I-7;。,)f=1+0.5421-2.164905)=0.5538a(T)=aa(T)=0.4278XT;/亿,a(T>0.42748×储x22.l)X05538=OO76667(Pam6)/mol3.394×10b=0.08664RTJp,=0.08664×8.314×126.1/(3.394×106)=2.6763×105m3mlap0.076667×1000×1051A=-7=-二;-=1.4882R-T-(8.314)-X(273)8.314 × 273RTbp_2.6763×105×100o×IO5D-11Iy1按照式(2-16a)-hB+h)-1.2621-hh、T+>和式(2-16b),bB1.1791n=-=VZZ同样迭代不收敛采用RKS方程解三次方程得:V=0.00004512m3molpV4.512×10"5×1000×105RT8.314x2732-16.试用下列各种方法计算水蒸气在107.9Xl()5pa、593K下的比容,并与水蒸气表查出的数据(V=0.01687m3.kg,)进行比较。(1)理想气体定律(2)维里方程(3)普遍化RK方程解:从附录三中查得水的临界参数为:Tc=647.13K, pc22.055MPa, =0.345(1)理想气体定律z RT 8.314x593 V =107.9×105=4.569 ×106m3 mo1 = 0.02538 m3 kgT误差=幽鬻*"I00%=,%(2)维里方程T593Tr=-=-=0.916Tc647.13XKT9pc22.055×106使用普遍化的第二维里系数:B(S=0.083-0.422/7;16=0.083-=-0.4026O172fi(,)=0.139-0.172/T;4=0.139-了告=-0.10961+班也篝=暧)+口B=-0.4026+0.345X(-0.1096)=-0.4404=1+×(_o.44O4)=0.76490.916'7ZRT 0.7649 × 8.314×593107.9 × IO5=3.495 ×106m3 nx>, = 0.01942 m3kg'l3y 0.01687-0.01942 nrftz 皿皿联差=X100% = -15.1%0.01687(3) 普遍化R-K方程(2-38a)(2-38b)将对比温度和对比压力值代入并整理的:-h X5 + h- -5.628-h1T+h_ CbPr _ 0.()4625 fl ZT1联立上述两式迭代求解得:Z=0.7335ZRT 0.7335 × 8.314 × 593107.9 × IO5= 3.3515 ×106m3mor, = 0.01862 m3 kg,P =rV-b V2式中:a = TJR2TMp =史如吐*鱼 =0.3655 Pa MmL64 × 7.382 ×10误差=%福萼%水是极性较强的物质2-17.试分别用(I)VanderWaaIS方程;(2)RK方程;(3)RKS方程计算273.15K时将CO2压缩到体积为550.1Cm3mo所需要的压力。实验值为3.090MPa。解:从附录三中查得CO2的临界参数为:=304.19K,pt.=7.382MPa,=0.228(1) vanderWaals方程RTab = RT8pc_ 8.314x304.19 8×7.382×106=4.282 ×105 m3 molRT a _8.314x273.15P V-b V2 550.1x10642.82x10-60.3655(550.1×106)2=3.269 × 106Pa=3.269MPa误差% =3.090-3.2693.090× 100% =-5.79%(2) RK方程RTClV-bT05V(V+b)式中:a=0.42748R2T5/p,=。*748><(8.314x1“*.-=6.4599Pam6K05mol-2Ce7.382×IO6,八八QZzID/0.08664×8.314×304.19CgQn.531-1b=0.O8664R7;/p=2.968×10mmolCc7.382×IO6RTaV-hT05V(V+Z?)_8.314x273.156.4599550.1×106-29.68X106(273.15严×550.1×10'6×(550.1+29.68)×10'6=3.138×106Pa=3.138MPa口乂“3.090-3.138Snfly/误差=×100%1.55%3.090(3) RKS方程RTa(T)V-bVfy+b)式中,a(T)=aa(T)=0.4278R?T;/pca(T)a(T)=fl+m(l-Tf05)f而,加=0.480+1.574啰一0.176fy2=0.480+1.574X0.2280.176×(0.228)2=0.8297则,a(T) = l + m(l-T105 )f = 1 + 0.8297 X 1'273.15<304.19;2=1.089a=a (7j = 0.42748 R2T; / p,. a(T)=0.40335 Pa m3 mo,0.42748 (8.314F x(304.19)7.382 × IO6I2-X 1.089Zj = 0.08664R7; /,=0.08664×8.314×304.197.382×106=2.968 x 10 5m3 mol_RT_a(r)=8.314x273.150.40335pV-bv(y+b)550.1×106-29.68×106550.1×10-6×(550.1+29.68)×106=3.099×IO6Pa=3.099MPa3090-3099%=DWX100%=-0.291%3.090比较几种方程的计算结果,可见,VanderWaaIS方程的计算误差最大,RKS方程的计算精度最好。RK方程的计算精度还可以。2-18.一个体积为0.3的封闭储槽内贮乙烷,温度为290K、压力为25XIO5Pa,若将乙烷加热到479K,试估算压力将变为多少?解:乙烷的临界参数和偏心因子为:Tc=305.32K,Pr=4.872MPa,=0.099因此:Trl=7;/7;=290/305.32=0.95prl=pipc2.5/48.72=0.513故使用图2-11,应该使用普遍化第二维里系数计算8=0.083-0.422/T16=0.083-J*.=-0.375(0.95)160172=0.139-0.172/742=0.139-z',=-0.074(0.95)42Z署=1+®。").隹卜+(-03750.099X0.074)X需=0.7935ZRT _ 0.7935 X 8.314 X 290p25 × IO5=76.5× 105(m3 mol-l)n=-=392.2(mol)V76.5x10-7加热后,采用RK方程进行计算。其中:=479K,摩尔体积仍然为V=76.5XIO"n?moL,首先计算:=°协8奴”=042748噌/(305包"如“。”),八CON(ZlDT/0.08664×8.314×305.32.a_531Ab=0.08664/?7;,/p=4872。6=4.514×10(mmol)代入RK方程:RTaP=V-bT0-5V(V+b)_8.314x4799.879-765.0×106-45.14×106(479)05×765.0×106×(765.0+45.14)×106=4.804X106Pa=4.804MPa2-19.如果希望将22.7kg的乙烯在294K时装入0.085的钢瓶中,问压力应为多少?解:从附录三查得乙烯的临界参数为:Tc=282.34K,pr=5.04IMPa,=0.08522.7×IO328=810.7(ml)摩尔体积V=0.085n-810.7=104.8×10-6(m3mo,)采用RK方程进行计算。首先计算:a=0.42748R2T5/p=。,2748(8.314)-(282.34尸=7£51m6K05mo2)531x1()6),八M/0.08664x8.314x282.34Zin.531b=0.08664R7;/PC=504。6=4.034×10(mmol代入RK方程:RTaPV-bT05V(V+b)_8.314x2947.851104.8×106-40.34×106(294)05×104.8×W6×(104.8+40.34)×106=7.817×106Pa=7.817MPa2-20(由于较简单省略了,忽略不计了)2-21.用PitZer的普遍化关系式计算甲烷在323.16K时产生的压力。已知甲烷的摩尔体积为1.25X10-4m?m°r,,压力的实验值为1.875×107Pa<.解:从附录三查得甲烷的临界参数为:Tf=190.56K,pc=4.599MPa,=0.011t=T=323.16/190.56=1.696;但是Pr不能直接计算,需要试差计算p=Z7,V=Z×8.314×323.16(1.25×104)=2.149×107Z并且P=Pc'Pr=4.599×1()6Pr4599×n因此,结合上两式得:Z=-1=0.214Pr(八)2.149×107Pitzer的普遍化关系式为:Z=Z+GZ(B)根据(八)、(B)两式进行迭代,过程为:(1)设Z值,然后代入(八)式求出凡;(2) 根据7;和Pr值查(2-9)和(2-10)得到Z(°)和Z;(3) 将查图得到的Z和Z值代入(B)式求得Z值;(4)比较Z的计算值与实验值,如果相差较大,则代入(八)式重新计算,直到迭代收敛。依据上述迭代结果为:pr=4.06时,Z=0.877则:p=pc.pr=4.599×IO6pr=4.599×IO6×4.()6=1.867×IO7Pa误差:(1.875-1.867)xK)?/1.875×IO7=0.43%222.试用RK方程计算二氧化碳和丙烷的等分子混合物在151C和13.78MPa下的摩尔体积。解:计算所需的数据列表如下:组元cpc×105/PaVr×106(m3no,)Za/(Pam6K°5mol)/?/(m3mo1)CO2(1)304.273.8294.00.2746.4602.968XlO5C3H8(2)369.842.482000.27718.296.271×10512335.454.72140.411.12由(251a)和(25Ib)得:aM=);+2>,1y212+yla22=0.52×6.460+2×0.5×0.5×11.12+0.52×18.29=11.75Pam6K05mor2bM=y.by+j2Z72=0.5×2.968×105+0.5×6.271×10-5=4.415×10-5(m3mo,)A=当7的%2RTS(8.314)2X(424.IS/=0.1725如P_4.415XloyX13.78×IO6RT8.314×424.15按照式(2-16a)Z=-hB-3.6084-h1+J(八)和式(2-16b)h='1725(B)VmZZ联立求解方程(八)、)(B)进行迭代计算得:迭代次数Zh010.1725I0.67760.254620.60930.283130.59870.288140.59760.288750.59750.2887因此:Z=0.5975,=0.2887混合物得摩尔体积为:=1.52 × 10 4m3 mol13.78 ×106ZRT0.5975×8.314×424.152-23.混合工质的性质是人们有兴趣的研究课题。试用RKS状态方程计算由R12(CCl2F2)和R22(CHC1F2)组成的等摩尔混合工质气体在400K和1.0MPa,2.0MPa,3.0MPa,4.0MPa和5.0MPa时的摩尔体积。可以认为该二元混合物的相互作用参数自2=0(建议自编软件计算)。计算中所使用的临界参数如下表组元(/)TjKPClMPaR22(1)369.24.9750.215R12(2)3854.2240.176解:计算过程是先计算两个纯组分的RKS常数,再由混合规则获得混合物的RKS常数后,可以进行迭代计算,也可以求解三次方程的体积根。建议大家自编程序进行计算。所得的结果列于下表:TyK400组成M=%=°5RKS方程常数组分(1):a=0.7568b=5.346×IO-5组分(2):a=1.007b=6.565×105p/MPa12345Vcai/(cm3mol1)3114.01442.3877.0585.5399.3混合物a=0.8774b=5.956XlO-52-24.试用下列方法计算由30%(摩尔)的氮(1)和70%正丁烷(2)所组成的二元混合物,在462K、69XIO5Pa下的摩尔体积。(1)使用PiIZer三参数压缩因子关联式(2)使用RK方程,其中参数项为:,0.086640RTi4=-Pa0.427480R2看%=Pcu(3)使用三项维里方程,维里系数实验值为5“=14x10-6,=265x10',B12=-9.5×106,(B的单位为m3moL)°C111=1.3×109,C222=3.025×109,C112=4.95XlO-9,C122=7.27×109(C的单位为m$.moL)。已知氮及正丁烷的临界参数和偏心因子为N2Tc=126.10K,pc=3.394MPa,=0.040nC4H10=425.12K,pc=3.796MPa,=0.199解:(1)根据Kay规则求出混合物的虚拟临界参数Tpe=ZyiTci=0.3×126.10+0.7×425.12=335.41Kppc=Xyipci=0.3X3.394+0.7X3.796=3.675MPa<y=>yicoi=0.3X0.040+0.7X0.199=0.1513T462虚拟对比条件为:7'pr=-=1.377pTpc335.41PPr=旦=里一=1877pPpi.3.675查图29和210得:Z(°)=0.77,Z=0.19则:Z=Z+3Z=0.77+0.1513×0.19=0.7987ZRT0.7987×8.314×4626.9×106=4.446×104(m3nn,)(2) RK方程Z=JI-AT15U+/?JVZRTa=yall+2yly2al2+ya220.42748K7登Pcn组元,/KpcX105/PaVr×106(m3mol)Ztz(Pam6K05mo2)Z?/(m3mo,)11126.1033.9490.10.2921.5552.676×IO522425.1237.962550.27429.018.067XIO512231.5334.37158.50.2837.012aM=0.32X1.555+2×0.3×0.7×7.012+0.72×29.01=17.30Pam6K05r2Cl (S- 1bRTi5 I+JTbM=0.3×2.676×105+0.7×8.067×105=6.450×IO-5m3m3,17.30(h6.450×105×8.314×(462)l5U+zJ-3.25-h Ih_2 + h,h = 2 =电LV ZRT6.450×105×69×105_0.1159Zx8.314×462Z进行试差迭代得:Z=0.746,A=O.156zZRT0.746×8.314×462zl<n-431、V=4.15×10Immol1)p6.9×IO6'7(3) 三项的维里方程为:7PV、BCZ=Ih1-RTVV2BM=yfB11+2y1y2B12+y1B22=.32×(14)÷2×0.3×0.7×(-9.5)+0.72×(-265)×10=-1.326×10'4(m3mo,)CM=EEZyiyjykGjk=yGu+3yy2G2+3yMG22+y=C222>Jk=.33×(1300)+3×0.32×0.7×(4950)+3×0.3×0.72×7270+0.73×(30250)×10=1.455×103(m6mol2)将以上结果代入三项维里方程得:69×105Vi1.326×1041.455×1038.314×462VV2试差求解得:V=4.25×10-4m3mo,2-25.一压缩机,每小时处理454kg甲烷及乙烷的等摩尔混合物。气体在5OXl()5Pa、422K下离开压缩机,试问离开压缩机的气体体积流率为多少ch'?解:混合物的分子量为M=O5M(h+0.5Mch=0.5×16.04+0.5×30.07=23.06混合物的流率为:45423.06= 19.7(kmolh,)利用Kay规则求虚拟临界常数:Tne = Y vT . =0.5×190.56 + 0.5 X 305.32 = 247.94 KPpC=E yipci = 0.5 × 4.599 + 0.5 × 4.872 = 4.736 MPaT 422虚拟对比条件为:Tlfr= 1.702Pr Tpc 247.94PPr上二工PK 4.736= 1.056用图2-11判断,应该使用维里方程,现将所需数据列于下表,其中第三行数据按照(2-48a)(2-48e)式计算。UT"KPdj1MPaVcy/(m3kmo1)ZeJ%11190.564.5990.098600.2860.01122305.324.8720.14550.2790.09912241.214.7010.12050.28250.055采用二阶舍项的Virial方程计算混合物的性质,需要计算混合物的交互第二Virial系数,计算结果见下表,UB8¾.(m3kmo,)11-0.03530.133-0.0116522-0.1680.0948-0.0828712-0.08940.1226-0.03528由式(2-46)得:BM=y12B11+2yly2B12+yB22=0.52×(-0.01165)+2×0.5×0.5×(-0.03528)+0.52×(-0.08287)=-0.04127(m3kmol,)zRTQ8.314×IO3×422nnj-八Szli-3z311-xV=+B=0.04127=0.6604X10(mkrl)p5.0×106体积流率hV=19.7×0.6604=13.01(3,)2-26.H2和N2的混合物,按合成氨反应的化学计量比,加入到反应器中N2+3H2=2NH3混合物进反应器的压力为600×IO5Pa,温度为298K,流率为6m3h-'o其中15%的N2转化为NH3,离开反应器的气体被分离后,未反应的气体循环使用,试计算:(1)每小时生成多少公斤Nth?(2) 若反应器出口物流(含NFh的混合物)的压力为550Xl()5pa、温度为451K,试问在内径D=0.05m管内的流速为多少?解:(1)这是一个二元混合物系PvT的计算问题。使用RK方程进行计算Z=Ja(hyI-AbRTl5l+h)h上=见VZRTa=yfan+2yiy2an-yja22b=y2+y2b20.42748/?271?f=-组元TcKPCXKr5/Pa½,×IO6/(m3moll)乙

    注意事项

    本文(化工热力学课后题答案马沛生..docx)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开