欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    异步电动机动态数学模型的建模及仿真.doc

    • 资源ID:23618       资源大小:290.21KB        全文页数:15页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    异步电动机动态数学模型的建模及仿真.doc

    目录摘要21设计意义及要求31.1设计意义31.2设计要求32异步电动机动态数学模型42.1异步电动机动态数学模型的性质42.2异步电动机的三相数学模型52.3 坐标变换7坐标变换的根本思路7三相-两相变换3/2变换72.3.3 静止两相-旋转正交变换2s/2r变换22.4状态方程103模型建立123.1AC Motor模块123.2坐标变换模块133.2.1 3/2 transform模块133.2.2 2s/2r transform 模块133.2.3 2r/2s transform 模块143.2.4 2/3 transform模块153.2.5 3/2r transform模块163.3仿真原理图174仿真结果及分析205结论错误!未定义书签。参考文献2摘要对一个物理对象的数学模型,在不改变控制对象物理特性的前提下采用一定的变换手段,可以获得相对简单的数学描述,以简化对控制对象的控制。对异步电机的数学分析也不例外,在分析异步电机的数学模型时主要用到的是坐标变换。当异步电动机用于机车牵引传动、轧钢机、数控机床、机器人、载客电梯等高性能调速系统和伺服系统时,系统需要较高甚至很高的动态性能,仅用基于稳态模型的各种控制不能满足要求。要实现高动态性能,必须首先研究异步电动机的动态数学模型,高性能的传动控制,如矢量控制磁场定向控制是以动态d-q模型为根底的。关键字:异步电动机数学模型坐标变化 d-q坐标系异步电动机动态数学模型的建模与仿真1 设计意义及要求1.1设计意义学会分析异步电动机的物理模型,建立异步电动机的动态数学模型,并且推导出两相静止坐标系上的状态方程和转矩方程,利用Matlab/Simulink仿真工具把数学方程转变为模型。通过数学模型观察异步电动机在启动和加载的情况下,转速、电磁转矩、定子磁链和定子电流的变化曲线,同时分析各个变量之间的变化关系。进一步了解异步电动机的运行特性。1.2设计要求初始条件:1技术数据:异步电动机额定数据:PN =3 kw, UN =380 V, IN =6.9 A, nN =1450 r/min, fN=50 Hz;Rs=1.85, Rr=2.658, Ls=0.2941 H, Lr=0.2898 H, Lm=0.2838 H;J=0.1284 Nm.s2, np=22技术要求:在以w-is-ys为状态变量的dq坐标系上建模要求完成的主要任务: 1设计容:(1) 根据坐标变换的原理,完成dq坐标系上的异步电动机动态数学模型(2) 完成以w-is-ys为状态变量的dq坐标系动态构造图(3) 根据动态构造图,完成异步电动机模型仿真并分析电动机起动和加载的过渡过程(4) 整理设计数据资料,完成课程设计总结,撰写设计说明书2 异步电动机动态数学模型2.1异步电动机动态数学模型的性质他励式直流电动机的励磁绕组和电枢绕组相互独立,励磁电流和电枢电流单独可控,假设忽略队励磁的电枢反响或通过补偿绕组抵消之,那么励磁和电枢绕组各自产生的磁动势在空间相差/2,无穿插耦合。气隙磁通由励磁绕组单独产生,而电磁转矩正比于磁通与电枢电流的乘积。不考虑弱磁调速时,可以在电枢合上电源以前建立磁通,并保持励磁电流恒定,这样就可以认为磁通不参与系统的动态过程。因此,可以只通过电枢电流来控制电磁转矩。在上述假定条件下,直流电动机的动态数学模型只有一个输入变量电枢电压,和一个输出变量转速,可以用单变量的线性系统来描述,完全可以应用线性控制理论和工程设计方法进展分析与设计。而交流电动机的数学模型那么不同,不能简单地采用同样的方法来分析与设计交流调速系统,这是由于以下几个原因。1异步电动机变压变频调速时需要进展电压或电流和频率的协调控制,有电压或电流和频率两种独立的输入变量。在输出变量中,除转速外,磁通也是一个输出变量。2异步电动机无法单独对磁通进展控制,电流乘磁通产生转矩,转速乘磁通产生感应电动势,在数学模型中含有两个变量的乘积项。3三相异步电动机三相绕组存在穿插耦合,每个绕组都有各自的电磁惯性,再考虑运动系统的机电惯性,转速与转角的积分关系等,动态模型是一个高阶系统。因此,异步电动机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。2.2异步电动机的三相数学模型作如下的假设:1忽略空间谐波,三相绕组对称,产生的磁动势沿气隙按正弦规律分布。2忽略磁路饱和,各绕组的自感和互感都是恒定的。3忽略铁心损耗。4不考虑频率变化和温度变化对绕组电阻的影响。无论异步电动机转子是绕线型还是笼型的,都可以等效成三相绕线转子,并折算到定子侧,折算后的定子和转子绕组匝数相等。异步电动机三相绕组可以是Y连接,也可以是连接。假设三相绕组为连接,可先用Y变换,等效为Y连接。然后,按Y连接进展分析和设计。这样,实际电机绕组就等效成图2-1所示的定子三相绕组轴线A、B、C在空间固定,转子绕组轴线a、b、c随转子旋转的三相异步电机物理模型。图2-1 三相异步电动机的物理模型异步电动机的动态模型由磁链方程、电压方程、转矩方程和运动方程组成。其中,磁链方程和转矩方程为代数方程,电压方程和运动方程为微分方程。1磁链方程异步电动机每个绕组的磁链是它本身的自感磁链和其它绕组对它的互感磁链之和,因此,六个绕组的磁链可用下式表示:式中,是6×6电感矩阵,其中对角线元素、是各有关绕组的自感,其余各项那么是绕组间的互感。2电压方程三相定子的电压方程可表示为:方程中,、为定子三相电压;、为定子三相电流;、为定子三相绕组磁链;为定子各相绕组电阻。三相转子绕组折算到定子侧后的电压方程为:(3)电磁转矩方程式中,为电机极对数,为角位移。(4)运动方程式中,为电磁转矩;为负载转矩;为电机机械角速度;为转动惯量。2.3 坐标变换坐标变换的根本思路异步电动机三相原始动态模型相当复杂,简化的根本方法就是坐标变换。异步电动机数学模型之所以复杂,关键是因为有一个复杂的电感矩阵和转矩方程,它们表达了异步电动机的电磁耦合和能量转换的复杂关系。要简化数学模型,须从电磁耦合关系入手。三相-两相变换3/2变换三相绕组A、B、C和两相绕组之间的变换,称作三相坐标系和两相正交坐标系间的变换,简称3/2变换。图2-2 三相坐标系和两相正交坐标系中的磁动势矢量ABC和两个坐标系中的磁动势矢量,将两个坐标系原点重合,并使A轴和轴重合。按照磁动势相等的等效原那么,三相合成磁动势与两相合成磁动势相等,故两套绕组磁动势在轴上的投影应相等,因此写成矩阵形式按照变换前后总功率不变,匝数比为那么三相坐标系变换到两相正交坐标系的变换矩阵三相-两相变换3/2变换两相正交坐标系变换到三相坐标系简称2/3变换的变换矩阵2.3.3 静止两相-旋转正交变换2s/2r变换从静止两相正交坐标系到旋转正交坐标系dq的变换,称作静止两相-旋转正交变换,简称2s/2r变换,其中s表示静止,r表示旋转,变换的原那么同样是产生的磁动势相等。图2-3 静止两相正交坐标系和旋转正交坐标系中的磁动势矢量旋转正交变换阵静止两相正交坐标系到旋转正交坐标系的变换阵旋转正交坐标系到静止两相正交坐标系的变换阵定子旋转变换阵转子旋转变换阵电压方程磁链方程转矩方程旋转变换是用旋转的绕组代替原来静止的定子绕组,并使等效的转子绕组与等效的定子绕组重合,且保持严格同步,等效后定、转子绕组间不存在相对运动。旋转正交坐标系中的磁链方程和转矩方程与静止两相正交坐标系中一样,仅下标发生变化。从外表上看来,旋转正交坐标系中的数学模型还不如静止两相正交坐标系的简单,实际上旋转正交坐标系的优点在于增加了一个输入量1,提高了系统控制的自由度。2.4状态方程旋转正交坐标系上的异步电动机具有4阶电压方程和1阶运动方程,因此须选取5个状态变量。可选的状态变量共有9个,这9个变量分为5组:转速;定子电流;转子电流;定子磁链;转子磁链。转速作为输出变量必须选取。其余的4组变量可以任意选取两组,定子电流可以直接检测,应中选为状态变量。剩下的3组均不可直接检测或检测十分困难,考虑到磁链对电动机的运行很重要,可以选定子磁链或转子磁链。状态方程为状态变量。状态变量输入变量输出变量状态方程转矩方程输出方程转子电磁时间常数电动机漏磁系数根据以上公式绘制动态构造图如图:图2-4 为状态变量在dq坐标系中动态构造图3 模型建立3.1 AC Motor模块根据图2-4的动态构造图,用MATLAB/SIMULINK根本模块建立在dq坐标系下异步电动机仿真模型AC Motor模块。AC Motor模块图如图3-1。根据图2-4计算参数为:0.055 搭建AC moter模块如下列图所示:图3-1 AC motor 模块3.2坐标变换模块3.2.1 3/2 transform 模块根据静止两相正交坐标系到旋转正交坐标系的变换阵那么有 Usa=0.8165*Ua-0.4082*Ub-0.4082*Uc,Usb=0.7071*Ub-0.7071*Uc其中Ua,Ub,Uc为三相坐标系下的输入电压,Usa和Usb为静止两相正交坐标下的电压。搭建模块如下列图:图3-2 3/2 transform模块3.2.2 2s/2r transform 模块根据定子旋转变换阵那么有Usd=cosUsa+sinUsb,Usq=- sinUsa +Usb其中Usa和Usb为静止两相正交坐标下的电压,Usd和Usq为两相旋转坐标系下的电压。为d轴与a轴的夹角。搭建模块如下列图:图3-3 2s/2r transform模块3.2.3 2r/2s transform 模块根据旋转正交坐标系到静止两相正交坐标系的变换阵那么有 Isa= cosIsd - sinIsq,Isb= sinIsd + cosIsq其中Isa和Isb为静止两相正交坐标下的电压,Isd和Isq为两相旋转坐标系下的电压。为d轴与a轴的夹角。搭建模块如下列图:图3-4 2r/2s transform模块3.2.4 2/3 transform 模块两相正交坐标系变换到三相坐标系简称2/3变换的变换矩阵那么有其中Ia,Ib,Ic为三相坐标系下的输入电流,Isa和Isb为静止两相正交坐标下的电流。搭建模块如下列图:图3-5 2/3 transform模块3.2.5 3/2r transform 模块假设由三相坐标系直接变换到两相旋转坐标系下,得到其坐标变换矩阵为:搭建仿真模型为图3-6 3/2r transform模块3.3仿真原理图在进展异步电动机仿真时,以为状态变量的dq坐标系中的状态方程为核,在外围加上坐标变换和状态变换,就可得到在dq坐标系下的仿真结果。仿真原理图如下图。图3-7 仿真原理图参数设置其中有5个输入参数:三相正弦交流电压Usa,Usb,Usc,同步转速1,负载转矩Tl。三相正弦交流电压幅值均为380V,频率为100*pi HZ,相角分别为0、-2*pi/3、2*pi/3,同步转速为常数100*pi, 因此设定三相正弦交流电压参数如下列图所示:图3-8 Ua参数设置图图3-9 Ub参数设置图图3-10 Uc参数设置图根据N.M,额定负载转矩为19.76N.M,因此负载转矩为阶跃信号,设定阶跃时间为1s,阶跃初始值为0,终值为,如下列图所示:图3-11 Tl参数设置图4 仿真结果及分析由图3-7仿真原理图进展仿真,观察输出波形图如下:图4-1 电磁转矩与转速输出结果图其局部放大结果如下列图所示:图4-2 电磁转矩与转速输出结果局部图由局部放大图可发现当负载转矩为额定转矩时,转速不为额定转速。为使转速到达额定值,调整负载转矩为17N.M。调整之后电磁转矩及转速输出结果如下:图4-3调整后电磁转矩与转速输出结果图图4-4调整后电磁转矩与转速输出结果局部图由图4-4和图4-5可知,电动机空载启动时,转速迅速上升并到达稳定值1500r/min,电磁转矩在转速上升时作衰减震荡,最后稳定值为零。在1s时突加负载Tl=15N.M,转速降至1450 r/min,即额定值。三相电流结果图如下:图4-5三相电流输出结果图图4-6空载稳定三相电流输出结果图图4-7带额定负载三相电流输出结果图由图4-7和图4-8可知,空载运行电流幅值为4A,额定转速时运行电流幅值为6A。4 结论本设计从异步电动机的三相数学模型出发首先导出异步电动机三相动态数学模型并讨论其非线性、强耦合、多变量性质然后利用坐标变换加以简化。其次,利用MATLAB语言的SIMULINK功能给出了异步电动机的动态仿真模型并把该模型应用于异步电动机的调速分析研究中最后通过实验证明了模型的正确性并证明了该模型具有快捷、灵活、方便、直观等优点。利用MATLAB语言的SIMULINK组件仿真工具把数学方程转变为模型通过运行异步电动机的仿真模型可观察到异步电动机在启动和加载的情况下转速、电磁转矩、定子磁链和定子电流的变化曲线同时分析各个变量之间的变化关系从而更加直观明显的得到了结果。使用它做实验时只需调用该模型并置入相应的电动机参数即可。从而为异步电动机调速系统的仿真研究提供一种性能可靠、使用方便的电动机仿真模型。参考文献1 伯时.电力拖动自动控制系统第4版,机械工业,20092 孟庆春.建忠基于Simulink仿真工具的感应电动机仿真模型研究期刊论文-根底自动化 2000(01)3俊.马红辉 Simulink建模与仿真 20014 桂明.明照.应用MATLAB建模与仿真P.:科学,2001

    注意事项

    本文(异步电动机动态数学模型的建模及仿真.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开