欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    全等证明解题方法归纳.doc

    • 资源ID:22406       资源大小:293.14KB        全文页数:14页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    全等证明解题方法归纳.doc

    【第1局部 全等根底知识归纳、小结】1、全等三角形的定义: 能够完全重合的两个三角形叫全等三角形。两个全等三角形中,互相重合的顶点叫做对应顶点,互相重合的边叫对应边,互相重合的角叫对应角。概念深入理解:1形状一样,大小也一样的两个三角形称为全等三角形。外观长的像2经过平移、旋转、翻折之后能够完全重合的两个三角形称为全等三角形。位置变化图3图1图22、全等三角形的表示方法:假如ABC和ABC是全等的,记作“ABCABC其中,“读作“全等于。记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。3、全等三角形的性质: 全等是工具、手段,最终是为了得到边等或角等,从而解决某些问题。1全等三角形的对应角相等、对应边相等。 2全等三角形的对应边上的高,中线,角平分线对应相等。 3全等三角形周长,面积相等。 4、寻找对应元素的方法1根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。2根据的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;3通过观察,想象图形的运动变化状况,确定对应关系。通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过如下各种运动而形成的;运动一般有3种:平移、对称、旋转;5、全等三角形的判定:深入理解边边边SSS 边角边SAS 角边角ASA 角角边AAS斜边,直角边HL注意:容易出错1在判定两个三角形全等时,至少有一边对应相等边定全等;2不能证明两个三角形全等的是,三个角对应相等,即AAA;有两边和其中一角对应相等,即SSA。全等三角形是研究两个封闭图形之间的根本工具,同时也是移动图形位置的工具。在平面几何知识应用中,假如证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。6、常见辅助线写法:照着辅助线说明要能做出图、养成严谨、严密的习惯如: 过点A作BC的平行线AF交DE于F过点A作BC的垂线,垂足为D延长AB至C,使BCAC在AB上截取AC,使ACDE作ABC的平分线,交AC于D取AB中点C,连接CD交EF于G点 同一条辅助线,可以说法不一样,那么得到的条件、证明的方法也不同。【第2局部 中点条件的运用】1、复原中心对称图形倍长中线法中心对称与中心对称图形知识: 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。这两个图形中的对应点叫做关于中心的对称点。中心对称的两条根本性质:1关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。2关于中心对称的两个图形是全等图形。中心对称图形把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。一个图形如:平行四边形线段本身就是中心对称图形,中点就是它的对称中心,所以遇到中点问题,依托中点借助辅助线复原中点对称图形,可以把分散的条件集中起来集散思想。例1、AD是ABC中BC边上的中线,假如AB2,AC4,如此AD的取值围是_。例2、在ABC中,AD是BC边上的中线,E是AD上一点,延长BE交AC于F,AFEF,求证:ACBE。例3、如图,D是ABC的边BC上的点,且CD=AB,ADB=BAD,AE是ABD的中线。求证:AC=2AE例4 ABC中,AD、BE、CF是三边对应中线。如此O为重心 求证:AD、BE、CF交于点O。类倍长中线; 练习1、在ABC中,D为BC边上的点,BADCAD,BDCD,求证:ABAC2、如图,四边形ABCD中,ABCD,M、N分别为BC、AD中点,延长MN与AB、CD延长线交于E、F,求证BEMCFM3、如图,AB=AE,ABAE,AD=AC,ADAC,点M为BC的中点,求证:DE=2AM 根本型:同角或等角的补角相等、K型2、两条平行线间线段的中点“八字型全等 如图,C是线段AB的中点,那么过点C的任何直线都可以和二条平行线以与AB构造“8字型全等例1 梯形ABCD,ADBC,点E是AB的中点,连接DE 、CE。 求证:例2 如图,在平行四边形ABCD中,AD=2AB,M是AD的中点,CEAB于点E,CEM=40°,求DME的大小。提示:直角三角形斜边中线等于斜边的一半例3 ABD和ACE都是直角三角形,且ABDACE=90°,连接DE,设M为DE的中点。求证:MBMC;设BADCAE,固定RtABD,让RtACE移至图示位置,此时MBMC是否成立?请证明你的结论。练习 1、:如图,梯形ABCD中,ADBC,ABC=90°假如BD=BC,F是CD的中点,试问:BAF与BCD的大小关系如何?请写出你的结论并加以证明;2、RtABC中,BAC=90°,M为BC的中点,过A点作某直线,过B作于点D,过C作于点E。1求证:MD=ME2当直线与CB的延长线相交时,其它条件不变,1中的结论是否任然成立?3、如图1,在正方形ABCD和正方形CGEFCGBC中,点B、C、G在同一直线上,M是AE的中点,1探究线段MD、MF的位置与数量关系,并证明;2将图1中的正方形CGEF绕点C顺时针旋转,使正方形CGEF的对角线CE恰好与正方形ABCD的边BC在同一条直线上,原问题中的其他条件不变。1中得到的两个结论是否发生变化?写出你的猜测并加以证明。结合前面“8字型全等,仔细思考3、构造中位线三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线三角形中位线性质:三角形的中位线平行于第三边并且等于第三边的一半 重点区分:要把三角形的中位线与三角形的中线区分开,三角形中线是连结一顶点和它对边的中点;而三角形中位线是连结三角形两边中点的线段。全等法在ABC中,D、E分别是AB、AC边的中点,证明:DEBC,DE=BC证明:延长DE至F点,使DE=EF,连接CF倍长中线 三角形的中位线在位置关系和数量关系二方面把三角形有关线段联系起来,将题目给出的分散条件集中起来集散思想。注:题目中给出多个中点时,往往中点还是不够用的。例1 在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。求证:四边形EFGH是平行四边形。例2 四边形ABCD的对角线AC与BD相交于点O,且AC=BD,M、N分别是AB、CD的中点,MN分别交BD、AC于点E、F.你能说出OE与OF的大小关系并加以证明吗?练习 1、三角形ABC中,AD是BAC的角平分线,BDAD,点D是垂足,点E是边BC的中点,如果AB=6,AC=14,求DE的长。2、ABCD,BCAD ,DEBE ,DF=EF,甲从B出发,沿着BA->AD->DF的方向运动,乙B出发,沿着BC->CE->EF的方向运动,如果两人的速度是一样的,且同时从B出发,如此谁先到达F点?3、等腰RtABC与等腰RtCDE中,ACB=EDC=90°,连AE、BE,点M为BE的中点,连DM。1当D点在BC上时,求的值2当CDE绕点C顺时针旋转一个锐角时,上结论是否任然成立,试证明4、ABC、CEF都为等腰直角三角形,当E、F在AC、BC上,ACB=90°,连BE、AF,点M、N分别为AF、BE的中点1MN与AE的数量关系2将CEF绕C点顺时针旋转一个锐角,MN与AE的数量关系4、与等面积相关的图形转换 在涉与三角形的面积问题时,中点提供了底边相等的条件,这里有个根本几何图形 如图,ABC中,E为BC边的中点,那么显然ABE和AEC有一样的高AD,底边也相等,故面积相等。例 E、F是矩形ABCD的边AB、BC的中点,连AF、CE交于点G,如此=扩展 如图,等腰RtACD与RtABC组成一个四边形ABCD,AC=4,对角线BD把四边形ABCD分成了二局部,求的值。【5、等腰三角形中的“三线合一】“三线合一是相当重要的结论和解题工具,它告诉我们等腰三角形与直角三角形有着极为亲密的关系。例 ABC中,AB=AC,BDAC于D,问CBD和BAC的关系?分析:CBD和BAC分别位于不同类型的三角形中,可以考虑转为同类三角形。例 在ABC中,AB=AC=5,BC=6,点M为BC中点,MNAC于点N,如此MN=_【6、直角三角形斜边上的中线等于斜边的一半】这可以作为一个定理直接运用,关于这个定理的证明有多种方法,包括利用前面所讲中点的一些知识。例 如图RtABC中,ACD=90°,CD为斜边AB上的中线 求证:CD= AB1利用垂直平分线的性质:垂直平分线上任一点到线段 的二个端点的距离相等。 取AC的中点E,连接DE。如此DEBC中位线性质ACB=90°BCAC ,DEAC 如此DE是线段AC的垂直平分线AD=CD2全等法,证法略。例 在三角形ABC中,AD是三角形的高,点D是垂足,点E、F、G分别是BC、AB、AC的中点,求证:四边形EFGD是等腰梯形。练习 1、在RtABC中,A=90°,AC=AB,M、N分别在AC、AB上,且AN=BM。O为斜边BC的中点。试判断OMN的形状,并说明理由。2、ABC中,A=90°,D是BC的中点,DE DF。求证: 集散思想3、ABC中,AB=AC,点D在BC上,E在AB上,且BD=DE,点P、M、N分别为AD、BE、BC的中点1假如BAC=90°,如此PMN=_,并证明2假如BAC=60°,如此PMN=_3假如BAC= ,如此PMN=_【中点问题练习题】1、假设给出如下定义:有一组相邻角相等的四边形叫做等邻角四边形请解答如下问题:1写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;2如图1,在ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G求证:四边形AGEC是等邻角四边形;3如图2,假如点D在ABC的部,2中的其他条件不变,EF与CD交于点H,是否存在等邻角四边形,假如存在,是哪个四边形,不必证明;假如不存在,请说明理由2、:ABC和ADE都是等腰直角三角形,ABC=ADE=90°,点M是CE的中点,连接BM 1如图,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为_,写出证明过程。 2如图,点D不在AB上,1中的结论还成立吗?如果成立,请证明;如果不成立,说明理由。3、在AOB中,AB=OB=2,COD中,CD=OC=3,ABO=DCO连接AD、BC,点M、N、P分别为OA、OD、BC的中点假如A、O、C三点在同一直线上,ABO=60°,如此PMN 的形状是_,此时=_4、:如图,正方形ABCD中,E为对角线BD上一点,过E点作EFBD交BC于F,连接DF,G为DF中点,连接EG,CG1求证:EG=CG;2将图中BEF绕B点逆时针旋转45º,如图所示,取DF中点G,连接EG,CG问1中的结论是否仍然成立?假如成立,请给出证明;假如不成立,请说明理由 3将图中BEF绕B点旋转任意角度,如图所示,再连接相应的线段,问1中的结论是否仍然成立?通过观察你还能得出什么结论?均要求证明

    注意事项

    本文(全等证明解题方法归纳.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开