欢迎来到课桌文档! | 帮助中心 课桌文档-建筑工程资料库
课桌文档
全部分类
  • 党建之窗>
  • 感悟体会>
  • 百家争鸣>
  • 教育整顿>
  • 文笔提升>
  • 热门分类>
  • 计划总结>
  • 致辞演讲>
  • 在线阅读>
  • ImageVerifierCode 换一换
    首页 课桌文档 > 资源分类 > DOC文档下载  

    DFT性质及DFT应用地研究.doc

    • 资源ID:21227       资源大小:200.46KB        全文页数:13页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    DFT性质及DFT应用地研究.doc

    wordDFT性质与DFT应用的研究摘要:为了掌握DFT正变换与反变换之间的计算关系;观察和分析 DFS 应用中存在的混叠、泄漏、栅栏效应等问题和改善途径、方法;了解 DFT 实部、虚部之对应关系;验证 DFT 的假如干性质;学习 Matlab 中子程序的编写和调用;运用matlab编程,研究DFT的性质和以与可能在应用出现的问题;通过上述方法,实现了DFT函数的编程和调用,详细探究了DFT的在时域和K域的能量守恒关系、复数序列的圆周相关定理,观察了DFT在采样频率不够时的混叠现象、没加窗之前的泄露现象以与栅栏效应。关键词: DFT matlab 时域 K域 Abstract:In order to understand the relationship between DFT positive transform and inverse transformation, we can observe and analyze the problems such as aliasing, leakage and fence effect in DFS application, and improve the way and method. We understand the correspondence between DFT real part and imaginary part. The use of matlab programming, research the nature of DFT and may be in the application of the problem; through the above method to achieve the DFT function programming and call, a detailed study of the DFT in the Time domain and K domain, the algebraic phenomenon of DFT in the case of insufficient sampling frequency, the leakage phenomenon and the fence effect before windowing are observed.Keywords:DFT matlab time domain K domain1.前言:了掌握DFT正变换与反变换之间的计算关系;观察和分析 DFS 应用中存在的混叠、泄漏、栅栏效应等问题和改善途径、方法;了解 DFT 实部、虚部之对应关系;验证 DFT 的假如干性质;学习 Matlab 中子程序的编写和调用。应用前景与研究现状:MATLAB 的应用X围非常广,包括信号和图像处理、通讯、控制系统设计、测试和测量、财务建模和分析以与计算生物学等众多应用领域。附加的工具箱单独提供的专用MATLAB函数集扩展了MATLAB 环境,以解决这些应用领域内特定类型的问题。2.理论和方法理论DFT的定义离散傅里叶变换Discrete Fourier Transform,缩写为DFT,是傅里叶变换在时域和频域上都呈离散的形式,将信号的时域采样变换为其DTFT的频域采样。在形式上,变换两端时域和频域上的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。即使对有限长的离散信号作DFT,也应当将其看作其周期延拓的变换。公式如下0kN-1 0nN-1在用 DFT 计算连续信号时可能出现,频谱混叠;频谱泄露;栅栏效应等问题。MATLABMATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以与数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大局部。MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂矩阵实验室。它将数值分析、矩阵计算、科学数据可视化以与非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以与必须进展有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言如C、Fortran的编辑模式,代表了当今国际科学计算软件的先进水平。编写一个对,n=0,1,2,.,31进展DFT正变换和逆变换的程序;序列 x(n)的N点DTFT的物理意义是对的在0,2上进展 N 点等间隔采样。,绘出相频曲线和幅频曲线,令w=2k/N,分别计算并图示x(n)的8点、16点DFT;验证能量守恒关系 时域能量; K域能量;其中x(n)=sin(n/8)+i*cos(2n) n=0,1,31 m=0,1,31混叠现象衰减正弦信号 x(t)=1+sin(7f0t)cos(2f0t), f0=120Hz, fs=200Hz,采样点数 N=64,绘出相频曲线和幅频曲线,观察混叠现象;泄露现象x(t)= cos(2f 0 t),f 0 =60Hz,fs=200Hz,采样点数 N=64;哈明窗函数:w(n)=0.54-0.46cos(2n/N),n=0,1,2,N-1 分别图示x(n)的频谱,窗函数频谱以与加窗后的频谱(x(t)*w(n)即为加窗后函数)栅栏效应内容1的x(n)取07记为x(n),并补零至L点,L分别为16,32,64;计算并显示x(n)的频谱X(k),与x(n)的频谱X(k)比拟,观察补零的效果。验证圆周相关定理假如如此有,其中x(n),y(n)均为复数序列。3结果n=0:1:31;k=0:1:31;N=32;xn=sin(n).*n.*(-1).n;subplot(3,2,1);plot(xn);title('ԭͼ');subplot(3,2,2);stem(xn);title('ԭͼ');WN=exp(-j*2*pi/N);nk1=n'*k;WNnk=WN.nk1;Xk=xn*WNnk;subplot(3,2,3);plot(abs(Xk);title('DFT');subplot(3,2,4);stem(abs(Xk);title('DFT');nk2=n'*k;WNnk=WN.(-nk2);xn1=(Xk*WNnk)/N;subplot(3,2,5);plot(real(xn1);title('IDFT')subplot(3,2,6);stem(real(xn1);title('IDFT')图 1N1=1024;x1=(0:2*pi/1024:2*pi);X1=(1-exp(-1i*4*x1)./(1-exp(-1i*x1);N2=8;for i=1:N2; X2(i)=X1(i*N1/N2); x2(i)=2*pi*i/N2;endN3=16;for i=1:N3; X3(i)=X1(i*N1/N3); x3(i)=2*pi*i/N3;endsubplot(3,2,1),plot(x1,abs(X1),title('X1µÄ·ùƵÇúÏߣ¬N=1024');subplot(3,2,2),plot(x1,angle(X1),title('X1µÄÏàÆµÇúÏߣ¬N=1024');subplot(3,2,3),stem(x2,abs(X2),title('X2µÄ·ùƵÇúÏߣ¬N=8');subplot(3,2,4),stem(x2,angle(X2),title('X2µÄÏàÆµÇúÏߣ¬N=8');subplot(3,2,5),stem(x3,abs(X3),title('X3µÄ·ùƵÇúÏߣ¬N=16');subplot(3,2,6),stem(x3,angle(X3),title('X3µÄÏàÆµÇúÏߣ¬N=16'); 图 2clc;clear all;n=0:1:31;xn=sin(n/8)+j*cos(2*n);yn=dft(xn,32);yn1=conj(yn);for n=0:1:31 s1=sum(xn.*yn1);endXk=dft(xn,32);yn=Xk;图 3Yk=dft(yn,32);Yk1=conj(Yk);for k=0:1:31; s2=sum(Xk.*Yk1)/32;endclc,clear all;fs=200;f0=120;N=64;Ts=1/fs;n=1:N;xt=(1+sin(7*pi*f0*n*Ts).*cos(2*pi*f0*n*Ts);Xk=dft(xt,64);subplot(2,2,1);plot(abs(Xk);title('·ùƵ')subplot(2,2,2);stem(abs(Xk);title('·ùƵ')subplot(2,2,3);plot(angle(Xk);title('ÏàÆµ')subplot(2,2,4);stem(angle(Xk);title('ÏàÆµ')图 4clc,clear all;N=64;fs=200;f0=60;Ts=1/fs;n=1:N;x=cos(2*pi*f0*n*Ts); Xk=dft(x,64);subplot(3,2,1)plot(abs(Xk);title('Ô­º¯ÊýµÄƵÆ×') subplot(3,2,2);stem(abs(Xk);title('Ô­º¯ÊýµÄƵÆ×') n=0:(N-1);wn=0.54-0.46*cos(2*pi*n/N); Wn=dft(wn,64);subplot(3,2,3);plot(abs(Wn);title('´°º¯ÊýµÄƵÆ×')subplot(3,2,4);stem(abs(Wn);title('´°º¯ÊýµÄƵÆ×')x2=wn.*x;X2=dft(x2,64);subplot(3,2,5);plot(abs(X2);title('¼Ó´°ºóµÄƵÆ×')subplot(3,2,6);stem(abs(X2);title('¼Ó´°ºóµÄƵÆ×')图 5clc,clear all;n=0:7;N=8;xn1=sin(n).*n.*(-1).n;Xn1=dft(xn1,8);subplot(4,1,1);stem(abs(Xn1);title('N=8');n=0:15;N=16;xn2=sin(n).*n.*(-1).n;Xn2=dft(xn2,16);subplot(4,1,2);stem(abs(Xn2);title('N=16');n=0:31;N=32;xn3=sin(n).*n.*(-1).n;Xn3=dft(xn3,32);subplot(4,1,3);stem(abs(Xn3);title('N=32');n=0:63;N=64;xn4=sin(n).*n.*(-1).n;Xn4=dft(xn4,64);subplot(4,1,4);stem(abs(Xn4);title('N=64');图 6clc,clear all;x=1+1i,1-1i,2+1i,2-1i,3+1i,3-1i,4+1i,4-1i;y=1-1i,1+1i,2-1i,2+1i,3-1i,3+1i,4-1i,4+1i;rxy=;for m=1:8 y1=circshift(y,0,m); y2=conj(y1); z=sum(x.*y2); rxy(end+1)=z; endX=dft(x,8);Y=dft(y,8);Y1=conj(Y);Rxy=X.*Y1;rxx=uint8(idft(Rxy,8);图 7由能量关系可以看出S1=S2,即能量守恒关系成立;混叠现象中因为f0=120Hz,fs=200Hz,因此会出现图示的频谱因为周期延拓分量相互重叠而导致的混叠失真,如果要防止失真就要使fs>2f0;泄漏现象的因为哈明窗函数的参加,截取了原函数,即原函数和窗函数相乘,使窗内数据不变,而窗外的数据丢失;因为时域两个函数相乘相当于频域卷积,卷积后造成频谱的扩散,即变宽,相乘后函数比原函数中间局部变宽,即泄露现象;栅栏效应,因为DFT在计算频谱值计算离散点上的频谱,所以抽样频率过低就会造成谱线的失真,如下列图,导致一局部谱线得不到显示而造成视觉上的误差,要解决栅栏效应,只要使抽样的频率更密集,即增加抽样点数N,正如实验的一样随着抽样点数的增加,图像的失真情况越来越小,图像也越来越接近原函数。5.结论本实验采用matlab工具,对DFT的性质以与DFT应用做出了一系列的研究以与验证,结合所学过的知识,得出以下结论:1. DFT变换对于处理离散信号有着很好的特性;2. DFT在应用中的问题可以利用抽样点数、加窗函数等方法解决;13 / 13

    注意事项

    本文(DFT性质及DFT应用地研究.doc)为本站会员(夺命阿水)主动上传,课桌文档仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知课桌文档(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000986号

    课桌文档
    收起
    展开