毕业设计(论文)-通用液压机械手的设计【四自由度】.docx
在现代的制造业中,企业为提高生产效率,保障产品质量,普遍重视生产过程的自动化程度,同时中国各大城市的劳动力出现紧张的现象,工业机器人作为自动化生产线上的重要成员,逐渐被企业所认同并采用,其发展趋势十分迅猛。它的技术水平和应用程度反映了一个国家现代工业化的水平。目前,工业机器人主要承担着焊接、喷涂、搬运以及堆垛等重复性并且劳动强度极大的工作,在某些复杂的装配生产中也逐步被采纳。通过对机械设计制造及其自动化专业大学所学知识,对机械手各部分机械结构和功能的了解和分析,设计了此液压传动机械手。本课题重点针对机械手的手部、腕部、臀部等各部分机械结构以及液压系统进行了详细的设计与计算。大致可分为机械手的总体设计、机身结构的设计、机械手手臂结构的设计、机械手腕部的结构设计、手部的结构设计、机械手驱动系统的设计以及液压系统的设计。本设计的机械手可在空间抓放物体,动作灵活多样,可代替人工机械手,在高温和危险的作业区进行作业,可抓取材料特殊的工件,并保证工件不变形损坏。关键词:手部,腕部,臂部,液压系统ABSTRACTInthemodemlarge-scalemanufacturingindustry,enterprisespaymoreattentionontheautomationdegreeoftheproductionprocessinordertoenhancetheproductionefficiency,andguaranteetheproductquality,savinginlabor.Atthesametime,withthephenomenonoflaborforceinChina,scitiesappeared,industrialrobot,asanimportantmemberofautomationproductionline,graduallybecomeenterpriseisacceptedandadopted,itsdevelopmenttrendisveryrapidly.Thetechniquelevelandtheapplicationdegreeofindustrialrobotsreflectthenationalleveloftheindustrialautomationtosomeextent,currently,industrialrobotsmainlyundertakethejobofwelding,spraying,transportingandstowingetc.,whichareusuallydonerepeatedlyandtakehighworkstrength,andmostoftheserobotsworkinplaybackway.IntegratetheknowledgeofMachine,discussandanalysistheeachpartandfunctionofmanipulator;designakindofcylindercoordinatemanipulatorusedtopackandunloadworkpieceforCNCmachinetools.Inparticular,madethedetaileddesignaboutbase,arm,andenddeviceandthecontrolsystemetc.includingTotaldesign,waist,sconstructiondesign,thearm,sconstructiondesign,thewrist,sconstructiondesign,theenddevice5sconstructiondesign,andthedrivesystemofmanipulator.Atthesametime,analysisandcomputethehydraulicpressuresystemandcontrolsystem.Thedesignofthemanipulatorcanbecatchandputobjectsinspaceflexibility.Itcanalsoreplaceartificialtooperateathightemperaturesanddangerousareasandcangrabweightlargerartifacts,guaranteeingtheworkpiecedeformationdamage.Keywords:Manipulator,Hand,Wrist,Buttock,Hydraulicsystem第1章绪论1Ll工业机械手概述11. 1.1机械手的应用性2LL2机械手的先进性2L2设计目的3L3设计的内容及要求3第2章机械手方案设计4第3章机械手的机械结构设计63.1手部设计63.L1夹钳式手部设计的基本要求63.L2夹钳式手部的典型结构73L3滑槽杠杆式手部的设计计算73. 2腕部设计103.1.1 腕部的结构形式103.1.2 手腕驱动力矩的计算113.3臂部的结构143. 3.1手臂直线运动机构144. 3.2手臂伸缩运动145. 3.3导向装置155.4.4 手臂的升降运动165.4.5 手臂回转运动165.4.6 手臂的设计计算17第4章液压系统的设计226. 1各种驱动系统特点226.4 机械手驱动系统的选择原则226.5 机械手液压系统原理介绍236.6 液压系统简单计算256.7 液压系统的性能验算274.5.1系统压力损失验算274.5.2系统总效率验算284.5.3系统发热升温验算29第5章机械手的使用与维护305.1 液压系统的一般使用与维护315.2 一般技术安全事项31结论32参考文献33致谢34第1章绪论机械手是在自动化生产过程中使用的一种具有抓取、移动工件功能的自动化装置。近年来,随着电子技术,特别是电子计算机的广泛应用,机器人的研制和生产已经成为高科技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好的实现机械化和自动化的有机结合。机械手能代替人类完成危险、重复枯燥的机械式工作,可以减轻人类的劳动强度,提高生产力。机械手越来越广泛的获得了应用,在机械行业中,它可用于零部件的组装,加工工件的搬运、装卸,特别是在自动化的数控机床、组合机床上使用更为频繁。把车床设备和机械手组成一个共同的机械加工制造单元,应用于中小批量生产,可以节省庞大的工件运输装置,结构紧凑且实用性较强。目前,我国的工业机器人技术应用的水平和国外相比还有一定的距离,应用规模和产业化水平低,技术还不够成熟,机械手的研究和开发直接关系到我国自动化生产水平的提高。因此,进行机械手的研究和设计是十分有意义。1.1工业机械手概述美国是最早研究机械手的国家。1954年由美国学者戴沃尔提出了关于工业机器人的相关概念,并且申请了专利。此项专利其中说:通过借助伺服技术,控制机器人的关节,然后利用人手,对机器人进行相关动作的示教,机器人完成其相关的动作,这个就是示教再现机器人。当今社会发明的机器人基本上都是采用这种控制方式。1958年美国联合控制公司研制出了第一台机械手钾接机器人。作为机器人产品最早的实用机型(示教再现)是1962年美国AMF公司推出的“VERSTRAN”和UNIMATION公司推出的“UNIMATE”。工业机械手是近几十年发展起来的,应用于自动化生产的一种高科技设备。工业机械手是工业机器人的一个重要组成部分。它的特点是:可通过编程来完成机械手各种预期的作业任务,在构造和性能上兼备人和机器各自的优点,充分体现了人的智能和适应性。机械手现今有很多的种类,按适用范围可分为专用机械手和通用机械手;按驱动方式可以分为液压式、电动式、机械式机械手;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。机械手主要由手部、运动机构、控制系统三大部分组成。手部是用于抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量和作业要求可以分为多种结构形式,如夹持型、托持型和吸附型等。运动机构是使手部完成转动(摆动)、移动或复合等各种运动来实现规定的动作,来改变被抓持物件的位置和姿势。控制系统是通过对机械手每个自由度电机的控制,来完成机械手特定的动作的。同时接收传感器反馈过来的信息,形成稳定的闭环控制。控制系统的核心通常是由单片机等微控制芯片构成,通过对其编程实现所需要的功能。1.1.1 机械手的应用性1、有利于提高生产过程的自动化程度。应用机械手,可以提高草料的传送、工件的装卸以及机器的装配等自动化程度,因此可以提高劳动生产率,降低生产成本,实现共赢生产机械化和自动化的目的。2、有利于提高改善劳动条件、有效的使事故大大减小。在高温、低温、有放射性、噪声、臭味、以及其它毒性污染的工作空间狭窄等场所中,如果直接用手操作的话,非常的危险。但是如果应用机械手的话,在很大程度上地改善工人的相对劳动条件,也有利于提高生产率。并且在某些动作简单可是重复作业的机械式操作里面,要是用机械手代替人手进行工作,可以大大避免由于操作疲劳等原因造成的相关人身事故。3、有利于减少人力,便于生产有节奏的进行。应用机械手代替人工进行工作,这是直接减少人力的一个侧面,另外由于机械手可以连续地工作,这是减少人力的另外一个侧面。因此,在目前的自动化机床和综合加工自动化生产线上几乎都设有机械手,以便于减少人力以及更准确地控制生产的节拍,使生产有节奏地进行、112机械手的先进性机械工业发展的规模和技术水平是衡量国家经济实力和科学技术水平的一个重要标志。因此,世界各国都把发展机械工业作为发展经济战略的重点之一。生产水平和科学技术的不断发展和进步带动了整个机械工业的快速发展。现代工业中,生产过程的机械化、自动化已成为发展的重点。然而在机械工业中,许多加工、装配等生产还是不连续的。如果单靠人力将这些不连续的生产工序衔接起来,不仅费时费力而且效率也低,同时人的劳动强度也会非常大,有时还会出现失误甚至伤害。显然,这严重影响和制约了整个生产过程的效率和自动化程度。机械手的应用很好的解决了这一问题,它不存在重复的偶然失误,也能在一定程度上避免了人身事故。工业机械手在近代,是一项新的技术,而且快速成长,很短的时间里已成为现代机械制造生产体系里面的一个非常重要的一点,这种技术也逐渐发展成为一个新的学科一一机械手工程。机械手涉及到机械学、力学和电器液压技术、传感器技术、自动控制技术、还有计算机技术等诸多学科领域,是一门跨多学科技术。12设计目的毕业设计是学生完成专业教学计划的最后一个重要的实践性教学环节,通过毕业设计可以使学生在综合运用所学的基本理论、基本知识与基本技能去解决专业范围内的工程技术问题进行的一次基本的训练。也对学生即将从事的工作和未来事业的开拓具有一定的意义。其主要目的:锻炼学生综合分析和解决本专业的一般技术问题的能力,巩固和深化学生的基本知识。锻炼学生树立正确的设计思想和设计构思以及创新思维的能力。掌握工程设计的一般程序规范和方法。锻炼学生使用技术资料、国家标准手册、图册工具进行设计计算,进行数据处理,编写技术文件等方面的工作能力。锻炼学生进行研究调查,面向生产,面向实际,向工人和技术人员学习的基本工作态度,工作作风和工作方法。13设计的内容及要求此次设计主要内容是基于液压系统的机械工业手的设计。主要分三个部分:机械部分、驱动部分、控制部分。本次设计的主要内容是机械部分和驱动部分。对于机械部分,主要是对机械手的手部、腕部、臂部和机身进行设计,通过对各个部分的受力分析,设计出符合参数要求的零部件。对于驱动系统,采用液压驱动系统,拟订液压系统方案,井对系统方案安全性可靠性进行论证。此次设计的要求或技术指标:1. 米用圆柱坐标2. 具有4个以上自由度3. 机械手抓紧重量为5-30KG4. 手臂运动行程和速度水平伸缩:500mm,750mms升降:100mm,250mms回转:220o,IlOo/s5. 定位采用点位控制,定位精度为Imm第2章机械手方案设计方案一:可以采用如图2.1所示结构的机械手:图2.1机械手简图该方案中机械手采用圆柱式坐标,其运动系包含两个直线运动和两个回转运动,即沿X轴方向的伸缩,沿Z轴方向的升降和绕X轴和Z轴的回转。此种设计的机械手占地面积小而且活动范围大,结构简单,井且能达到较高的定位精度。这种机械手主要部件由四个液压液压缸组成:手臂升降液压缸、手臂回转液压缸、手臂伸缩液压缸和手腕回转液压缸,如图2.1的机械简图所示。方案二:可以采用如图2.2的机械手:1、机身2、液压缸3、手腕4、手部图2.2机械手简图此方案采用全液压系统控制,实现4自由度的工作,实现方式也非常的简单,可以根据推程实现不同工况,这种机械手是由四大部分组成的,其中,机身部分可以旋转满足一个自由度,液压缸部分可以完成上下的运动,手腕部能够进行旋转,手指部分进行抓到工件,这种机械手可以是用液压来进行全部的操作,也可以是用电来进行控制,这种机械手的优点是,它的运行比较其他的而言可以进行一些比较高物件的加工,它的可选择范围也是很大的,面积也是非常的广,缺点或者不足之处是这个机械手不是很容易的去安装,当不要继续使用的时候也不好往下拆,而且这种机械手的造价一般也是比较的昂贵。一般情况下,我们的工厂或者企业里面用的不是特别的广泛。就是从以上的这些方面来看,它在运动轨迹方面不如第一个方案的简单一些,等驱动装置使用相对较多,维护相对困难一些。由此可见,选择第一种方案比较的合适一些。第3章机械手的机械结构设计3.1 手部设计手部,一般是用来夹持工件的部件,因为被握持工件的尺寸大小、重量、材料性能、形状、表面状况等的不同,因此机械手的手部结构多种多样,多数手部结构都是由特定工件的要求来设计。大部分的手部,根据握持工件原理,可分为夹持及吸附两大类。夹持类一般有夹钳式,还有钩托式和弹簧式。吸附类的有气吸式和磁吸式。由于所设计的是通用型的机械手,因此对手部应具有通用性,能适应与不同的场合。因此,采用可更换的手部结构或组合式的手部结构,但是组合式的手部结构比较复杂。平移型手指的张开闭合靠手指的平行移动,适用于夹持平板、放料。在夹持直径不同的圆棒时,不会引起中心位置的偏移。但是这种手指结构比较复杂、体积大,要求加工精度高。夹钳式的手部结构比较简单,是由手指、和驱动装置,传动机构三部分组成,它对于抓取多种形状的工件也有比较大的适应性,其中能够抓取轴、套类零件。运用行广泛,因此这里选用夹钳式手部结构进行设计。3.1.1 夹钳式手部设计的基本要求1 .应具有适当的加紧力和驱动力,手指握力的大小要适宜,力量过大则动力消耗多,不经济,结构庞大,甚至会破坏工件。力量太小就夹持不住或者产生松动、脱落。在确定握力的时候,除了要考虑工件重量,还要考虑到传送或操作中产生的惯性力和振动,以此保证工件夹持的安全可靠。2 .手指也有开闭的一些范围,手指要有一定的开闭角度AV或开闭距离(对平移型手指从张开到闭合的直线移动距离)$,以此来方便工件。3 .尽量能够要保证加工精度,使工件有比较正确的位置。这对于方位要求的地方,比如有曲拐、凸轮轴等工件,在机床上安装的位置要求非常严格,所以机械手在手部夹持工件以后要保持一定的相对位置精度。4 .要求结构必须紧揍、重量轻、效率高,需要在保证其强度前提下,尽量要结构紧凑、重量轻,以使手臂的重量减少。5,考虑通用性及特殊要求,普通下,手部一般是专用的,为了能够扩大使用范围,提高其通用化程度,以此来夹持不同尺寸和形状的工件、,一般采用手指可调办法。除此,还需要考虑是不是适应工作环境的特殊要求,例如耐高温、耐腐蚀、能承受锻锤冲击力等。3.1.2夹钳式手部的典型结构主要有以下几种结构形式:(1)回转型有滑槽杠杆式、连杆杠杆式、内卡式、弹簧杠杆式等形式。(2)移动型移动型即手指相对支座作往复移动。(3)平面平行移动型这里选用滑槽杠杆式3.1.3滑槽杠杆式手部的设计计算一、驱动力的计算图3.1滑槽杠杆式手部受力分析如图为滑槽式手部结构。在拉杆3作用下销轴2向上拉力为F,并通过销轴中心。点,两手指滑槽对销轴的反作用力为、%,其力的方向垂直于滑槽中心线Ol和02并指向。点,%和人的延长线交0102于A及B,NAOC=NBOOa。根据销轴的力平衡条件,即ZFX=O得F1=F2-.EFy=O得耳=看(3.1)销轴对手指的作用力为,手指握紧工件时所需要的力称为握力(即夹紧力),假想握力作用在手指与工件接触面的对称平面内,并且设两力的大小相等,方向相反,以心表示。由于手指的力矩平衡条件,即、SM=C得Rh=Fb(3.2)h=acosQ(3.3)式中a手指的回转支点到对称中心线的距离(mm)Q工件被夹紧时手指的滑槽方向与两回转支点连线间的夹角;由此可知,当驱动力F一定时,角增大则握力FN也增加,但。角过大会导致拉杆行程过大,以及手指滑槽尺寸长度增大,使其结构加大,所以,一般。=30。40。这里取角。二30。o此种手部的结构简单,动作灵活,手指开闭角大等特点。综合上面驱动力的计算方法,可以求出驱动力的大小。为了考虑工件在传送过程中产生的惯性力、振动以及传力机构效率的影响,其实际的驱动力F实际应按照下面公式计算,即:¾v4)二、夹紧缸的设计计算夹紧装置是使手指夹紧工件的动力装置,选用液压驱动,为单向作用缸,回程用弹簧驱动,手指夹紧工件时,手指对工件的夹紧力按下列公式计算FNK1K,KiG(3.5)式中KlG全指数,一般是最开始的设计规定,如L22.0K2一工件情况系数,由力的大小决定,通过计算运动,可以了解到L2=1+-Ks一位置,通过工件大小可以确定gG-手部的作用对象本次设计的要求是:Xe)9用T响二0.05s所以a=0.9ms2K2=l+=1.09由此3=0.5K1=I.6G=30kg则由3.5式得所以夹紧力为笈23皿查表可得齿轮齿条传动的回转型夹钳手部驱动力计算公式为吊算=尸其中b=120mmR=3Omm由此可得F计算二2558N这里规定0.85而实际采用的驱动力要大于计算得出的数据。一般都要提到11,0.9o即11=0.85实际的大小为300ONb手到零件的长度R-这个大圆的半径手指加紧工件时,此时便有弹力(3.6)式中F弹簧由于弯曲的力一手部对于零件的系数G-弹簧的切削模量d一为了使手指松开的复位弹簧直径d=4mm;C一为弹簧的旋绕比C=ddZ弹簧所有的数目由上可得F=400N(3.7)求夹紧缸的工作压力P=P实际+P弹+P封(3.8)式中P一夹紧活塞上的机械载荷;P实际一实现驱动力;P封一密封处的工作压力,由摩擦力较工作阻力小计算得P=1.06P实际+P弹=3572.12N因为动力与其相等,所以由此可以确定液压缸的直径巴l+t(D-d2)p由F实际二4%根据要求来算D=I4P2-=0040mmVzzi-0.52)7(3.9)3. 2腕部设计腕部是连接手部与臂部的部件,起支承手部的作用。设计腕部时要注意以下几点: 结构紧凑,重量尽量轻。 转动灵活,密封性要好。 注意解决好腕部也手部、臂部的连接,以及各个自由度的位置检测、管线的布置以及润滑、维修、调整等问题 要适应工作环境的需要。止匕外,通往手腕液压缸的管道尽量从手臂内部通过,以便于手腕转动时管路不扭转和不外露,使外形整齐。3.2.1腕部的结构形式本机械手采用了回转液压缸驱动实现腕部回转运动,结构紧凑、体积小,但密封性差,回转角度为±110。如下图所示为腕部的结构,定片与后盖,回转缸体和前盖都用螺钉和销子进行连接和定位,动片与手部的夹紧液压缸缸体用键连接。夹紧缸体也是指座固连成一体。当回转液压缸的两腔分别通入压力油时,驱动动片连同夹紧液压缸缸体和指座一同转动,便为手腕的回转运动。图3.4机械手的腕部结构3.2.2手腕驱动力矩的计算驱动手腕回转时的驱动力矩须克服手腕起动时所产生的惯性力矩须克服手腕起动时所产生的惯性力矩,手腕的转动轴与支承孔处的摩擦阻力矩,动片与缸径、定片、端盖等处密封装置的摩擦阻力矩和由于转动的重心与轴线不重合所产生的偏重力矩。手腕转动时所要的驱动力矩按下式计算:(3.10)式中M驱一一驱动手腕转动的驱动力矩M惯惯性力矩Mfi参与转动的零部件的重量(包括工件、手部、手腕回转缸体的动片)对转动轴线所产生的偏重力矩M摩一一手腕转动轴与支承孔处的摩擦力矩图3.5腕部回转力矩计算图摩擦阻力矩M摩(3.11)式中f轴承的摩擦系数,滚动轴承取f=0.010.02,滑动轴承取f=0.1;Nl、N2轴承支承反力(N);Dl、D2轴承直径(m)由设计知Dl=O.035mD2=0.075mNl=800NN2=200NG1=294Ne=0.020时(3.12)得M摩=2.15(N.m)工件重心引起的偏置力矩M偏We式中Gl工件重量(N)e偏心距(即工件重心到碗回转中心线的垂直距离),当工件重心与手腕问转中心线重合时,M偏为零当e=0.020,G1=294N时M5.88(Nm)腕部启动时的惯性阻力矩M惯当知道手腕回转角速度打时,可用下式计算M悄NKW(3.13)式中手腕回转角速度(ls)t手腕启动过程中所用时间(三),(假定启动过程中近为加速运动)一般取0.050.3sJ手腕回转部件对回转轴线的转动惯量(kg1)Jin工件对手腕回转轴线的转动惯量(kgm),t=Q3s故Mr=0.29(Nm)I贝考虑到驱动缸密封摩擦损失的因素,一般将M取大一些,可取:回转液压缸所产生的驱动力矩计算回转液压缸要产生的驱动力矩须大于总的阻力矩M总o下图是机械手的手腕回转液压缸,定片1与缸体2固定连接,动片3与转轴5固定连接,当a、b口分别进出油时,动片带动转轴回转,达到手腕回转目的。一定片2-缸体3-动片4-密封圈5-转轴式中(3.15)图3.6回转缸简图M首一一手腕回转时的总的阻力矩心P0转液压缸的工作压力R缸体内孔半径r输出轴半径b动片宽度3. 3臂部的结构概述臂部是机械手的主要执行部件,它的作用是支承手部和腕部,并且将被抓取的工件传送到给定位置和方位上,所以一般机械手的手臂有三个自由度,即手臂的伸缩、左右回转和升降运动。手臂回转和升降运动都是通过立柱进行实现。立柱进行横向移动的时候,手臂也进行的向移动。手臂的多种运动一般由驱动机构以及各种传动机构实现的,因此,它不仅仅承受被抓取工件的重量,还要承受着手部、手腕、以及手臂自身的重量。手臂的工作范围、结构、灵活性还有它抓重的大小以及定位精度等都可以直接影响机械手工作性能,所以它必须根据机械手的抓取重量、自由度数、运动形式、运动速度和其定位精度的要求来进行设计手臂的结构型式。而且设计时必须考虑到手臂受力情况、液压缸及导向装置的布置、内部管路和手腕的连接形式等因素。所以设计臂部的时候应当注意以下几点要求:刚度要大为防止臂部在运动过程当中产生过大的变形,手臂的截面形状的选择要合理。弓字形截面弯曲刚度通常比圆截面大;空心管的弯曲刚度和扭曲刚度都比实心轴大很多。所以通常用钢管作臂杆及导向杆,用工字钢和槽钢作支承板。 导向性要好避免手臂直线运动的时候,沿手臂的运动轴线发生相对运动,或是设置导向装置,设计方形、花键等形式的臂杆。 偏重力矩要小偏重力矩指的是说臂部的重量对它支承回转轴所能够产生的静力矩。一般为能够提高运动速度,都要尽可能的减少臂部运动部分的重量,以此来减少偏重力矩和整个手臂对于回转轴的转动惯量。 运动平稳、定位精度高由于臂部运动速度越高、重量越大,惯性力引起定位前的冲击也会越来越大,运动就会不平稳,定位精度也不够高。应尽量减少臂部的重量,使结构紧凑,同时要采取相应的缓冲措施诬。3.3.1手臂直线运动机构机械手手臂的伸缩、升降都是属于直线运动,而实现手臂往复直线运动的机构形式较多,常用的都有活塞油(气)缸、活塞缸和齿轮齿条机构、丝杆螺母机构以及活塞缸和连杆机构。3.3.2手臂伸缩运动这里能够实现直线往复运动是采用液压驱动的活塞液压缸。由于活塞液压缸的体积小、重量轻。由图所知为双导向杆手臂的伸缩结构。手臂和手腕都是通过连接板安装在升降液压缸的上端,当双作用液压缸1的两腔分别通入压力油时,则推动活塞杆2(即手臂)都在作往复直线运动。导向杆3在导向套4内移动,为了防止手臂伸缩时的转动(并兼做手腕回转缸6及手部7的夹紧液压缸用的输油管道)。因为手臂的伸缩液压缸安装在两导向杆之间,由导向杆承受弯曲作用,活塞杆只受拉压作用,因此受力简单,传动平稳,结构紧凑。可以用在抓重大、行程较长的场合。1.3.3 导向装置液压驱动机械手手臂在进行伸缩(或升降)运动时,为了防止手臂绕轴线发生一定的相对转动,用来保证手指正确方向,而且使活塞杆可以不受较大弯曲力矩作用,以此来增加手臂的刚性,在设计手臂结构时,应采用合适的导向装置。它一般要由手臂安装形式,具体的结构以及其抓取重量多种因素来确定,并且在结构设计和布局上也要减少运动部件的重量以及减少手臂对回转中心转动惯量。目前采用的导向装置有单导向杆、双导向杆、四导向杆和其他导向装置,本此设计的机械手采用双导向杆。双导向杆配置是在手臂伸缩液压缸两侧,可以兼做手部和手腕油路的管道。对于一些伸缩行程很大的手臂,为了防止导向杆悬伸部分的弯曲变形,可以在导向杆尾部增设辅助支承架,也就是提高导向杆刚性.。如图所示,对于伸缩行程大的手臂,为了防止导向杆悬伸部分弯曲变形,可以在导向杆尾部增设辅助支承架,可以提高导向杆的刚性。如下图所示,在导向杆的尾端用支承架将两个导向杆连接起来,支承架两侧安装两个滚动轴承,当导向杆随同伸缩缸的活塞杆一起移动的时候时,支承架上的滚动轴承就在支承板的支承面上滚动。I-导向杆2-滚动轴承3-支撑板4-支撑架图3.7双导向杆手臂结构1.3.4 手臂的升降运动如图3-8所示为手臂的升降运动机构。当升降缸上下两腔通压力油时,活塞杠4做上下运动,活塞缸体2固定在旋转轴上。由活塞杆带动套筒3做升降运动。其导向作用靠立柱的平键9实现。图中6为位置检测装置。1一升降台2一缸体3一套筒4一活塞杆5活塞6固定立柱7齿条8平键图3.8手臂升降和回转机构图3. 3.5手臂回转运动为了实现手臂回转运动的机构形式是多种多样的,通常有回转缸、齿轮传动机构、链轮传动机构、连杆机构等。本此设计的机械手采用齿条缸式臂回转机构,如图所示,回转运动是有齿条活塞杆8驱动齿轮,带动配油轴和缸体一起转动,并且通过缸体上的平键9带动外套一起转动实现手臂的回转。3.3.6手臂的设计计算为了进行液压机械手的设计计算,可以进行伸缩液压缸、升降液压缸、回转液压缸的设计计算,解决臂部运动驱动力计算问题,结合上面有关臂部和机身的结构设计,最终确定出臂部和机身的结构。计算出臂部运动驱动力(包括力矩)时,必须把臂部所受的全部负荷考虑进去。机械手工作的时候,臂部所承受的负荷主要有惯性力、摩擦力和重力等。手臂水平伸缩缸的设计计算作水平伸缩在线运动液压缸的驱动力为手臂在做水平伸缩运动的时候,必须要克服摩擦阻力,包括了液压缸与活塞之间的摩擦阻力和导向杆与支承滑套之间的摩擦阻力等,而且要克服启动过程中的惯性力及加油背压等方面阻力其理论驱动力可按下式计算:16)估计参与手臂伸缩运动部件总重量且重心位置距导向套前端面的距离为200mmoF1的计算:由于导向杆对称分布,导向杆受力均衡,则可以一个导向杆计算。图3.9导向杆(3.17)(3.18)X=OGL=GLFb二ay=o则打W+c方=G咛)其中L重心距导向套前端距离,184.5mma导向套长度,300mm当量摩擦系数,取=0.15Q的计算:当液压缸的工作压力小于IOMe,活塞杆直径为液压缸直径的一半,则活塞和活塞杆都采用。型密封圈,此时液压缸的密封阻力为:(3.19)F0计算:一般背压阻力较小,外取0.05%F,的计算:(3.20)式中V由静止加速到常速的变化量t起动过程时间,一般取0.010.5s,取At=0.02s(3.21)实际驱动力Fs=305.5N式中k安全系数,k=2;n传力机构机械效率,11=o.8.确定液压缸的结构尺寸图3.10液压缸P=tr=液压缸内径的结构尺寸,如图,当进入无杆腔口22)23)当油进入有杆腔液压缸的有效面积口:式中F驱动力P1液压缸的工作压力d活塞杆直径D液压缸内径11液压缸机械效率,在工程机械中用耐油橡胶可取0.95液压缸臂厚计算此缸工作压力为2Mz,属低压,则缸筒臂厚采用薄壁计算公式式中p1液压缸内工作压力d强度系数,无缝钢管巾二1C计入管壁公差及侵蚀的附加厚度,一般圆整到标准臂厚值D液压缸内径联接螺钉强度计算螺钉数目Z=4,工作载荷:(3.24)预紧力查手册取螺纹直径4=&力,P=O.75,材料为35号钢的内六角螺钉。臂垂直升降运动驱动力的计算手臂在作垂直运动时,除了要克服摩擦阻力和惯性力之外,还要克服臂部运动部件的重力,故其驱动力可按下式计算口其中F1各支承处的摩擦力(N),G=TU,f=0.16;F0同上,后。CS国G臂部运动部件及工件的总重量(N),490N;+上升时为正,下降时为负。则得出F=727N26)结构尺寸的确定缸内径计算:,取D=160mm根据强度要求,计算活塞杆直径d:12结构上,活塞杆内部装有花键及花键套,能实现导向作用,同时可使活塞杆在升降运动中传动平稳,且获得较大刚度。臂厚同伸缩缸一样,取岳女为切联接螺钉强度计算:取螺钉数目Z=4,工作载荷号N4查手册取4=6力,螺距P=O.75向3Z)xiLqt=材料为35号钢的内六角螺钉口1225。臂部回转运动驱动力矩的计算臂部回转运动驱动力矩应当根据启动时产生的惯性力矩与回转部件支承处的摩擦力矩来计算。若轴承处的摩擦力忽略不计,则八补诙Rg,在设计计算时,为了简化计算M封可以不计。可直接计入回转缸效率中?M槽rM驱=",n取0.97(3.27)wM惯=J。五式中AWt角速度变化量(rads)启动过程时间,0.050.5s,取A=CHS手臂回转部件(包括工件)对回转轴线的转动惯量。经分析知,当手臂完全伸出时,此时“达到最大值,估算此时回转零件的重心到转轴线的距离为P=150mm,则125同转缸参数的计算(3.28)式中D回转缸内径d转轴直径P回转缸工作压力b动片宽度为减少动片与输出轴的联接螺钉所受的载荷及动片的悬伸长度,选择动片宽度(即液压缸宽度)时,可选用2b2b'2,这里取=3,且D=2dDdDd对于活塞、导向套筒和液压缸等的转动惯量都应当做详细计算,由于这些零件的重量较大或回转半径较大,对总的计算结果影响也很大,对于小零件则可以作为质点计算其转动惯量,对其质心转动惯量也可忽略不计。第4章液压系统的设计机械手的驱动系统,按照动力源一般分为液压、气压和电动三大类。有时也可以是这三种基本类型组成复合式的驱动系统。3.1 各种驱动系统特点(1)液压驱动系统由于液压技术是一种比较成熟的技术,它具有动力大、力惯量比大、快速响应高、能够实现直接驱动等一些特点,适用在承载能力大、惯量大和防爆环境中作业的机械手。(2)气动驱动系统拥有速度快、维修方便、系统结构简单、价格低等一系列特点,适用于中、小负载的系统,但是一般难于实现伺服控制,所以一般都用于程序控制的机械手。(3)电动驱动系统由于低惯量、大转矩的交、直流伺服电机以及配套的伺服驱动器(交流变频器、直流脉冲调制器)中广泛使用,这类驱动系统在机械手中被大量选用。4. 2机械手驱动系统的选择原则一般在设计机械手时,选择一类驱动系统,都是根据机械手的用途、作业的要求、机械手的性能规范、维护的复杂程度、运行的功耗、控制功能、性价比和现有条件等综合因素来考虑。在注意各类驱动系统特点的基础上,综合各因素,论证其合理性、经济性、可行性及可靠性后进行最终选择。一般情况下机械手驱动系统的选择按如下原则:(1)物料搬运用有限点位控制的程序控制机械手,重负载的可选用液压驱动系统,中等负载的可以选用电动驱动系统,轻负载的可选用气动驱动系统。(2)用于点焊和弧焊及喷漆作业的机械手,要求具有任意点位和轨迹控制的功能,则可以采用伺服驱动系统,采用液压或电动伺服驱动系统才能满足要求,根据设计要求,本次设计中选用液压驱动系统。图4.1机械手液压系统图电磁铁的动作顺序表序号椰IYA2YA3YA4YA5YA6YATYA8YA9YA10YIlYA12YA13YA三1拜麟-+-2-+3需上升+-4WB+-0祁目卷+-6感弱-+7三?-+8手醐仲+-9三ff-+10我翅+-11耨阴+-12理舞+-13耨减-14